A CIRCULARLY SYMMETRIC PRIMITIVE EQUATION MODEL OF TROPICAL CYCLONE DEVELOPMENT CONTAINING AN EXPLICIT WATER VAPOR CYCLE

STANLEY L. ROSENTHAL National Hurricane Research Laboratory, ESSA, Miami, Fla.

Search for other papers by STANLEY L. ROSENTHAL in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The tropical cyclone model described in previous reports is extended to include an explicit water vapor cycle. Results of experiments that examine effects due to initial humidity conditions, radial resolution, and the finite-difference scheme are discussed. Growth to the mature stage is more rapid in the moist environment, but peak intensity is not strongly affected by the initial moisture content. Rainfall rates are quite reasonable, and nonconvective precipitation is found to be a significant proportion of the total rainfall, in agreement with recent empirical results. Experiments with upstream differencing yield more realistic solutions than do experiments with centered differences. This surprising result is discussed in detail.

Abstract

The tropical cyclone model described in previous reports is extended to include an explicit water vapor cycle. Results of experiments that examine effects due to initial humidity conditions, radial resolution, and the finite-difference scheme are discussed. Growth to the mature stage is more rapid in the moist environment, but peak intensity is not strongly affected by the initial moisture content. Rainfall rates are quite reasonable, and nonconvective precipitation is found to be a significant proportion of the total rainfall, in agreement with recent empirical results. Experiments with upstream differencing yield more realistic solutions than do experiments with centered differences. This surprising result is discussed in detail.

Save