• Accadia, C., S. Mariani, M. Casaioli, A. Lavagnini, and A. Speranza, 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918932, https://doi.org/10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahlgrimm, M., R. M. Forbes, R. J. Hogan, and I. Sandu, 2018: Understanding global model systematic shortwave radiation errors in subtropical marine boundary layer cloud regimes. J. Adv. Model. Earth Syst., 10, 20422060, https://doi.org/10.1029/2018MS001346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A., and Coauthors, 2018: The numerics of physical parametrization in the ECMWF model. Front. Earth Sci., 6, 137, https://doi.org/10.3389/feart.2018.00137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ben Bouallègue, Z., T. Haiden, N. J. Weber, T. M. Hamill, and D. S. Richardson, 2020: Accounting for representativeness in the verification of ensemble precipitation forecasts. Mon. Wea. Rev., 148, 20492062, https://doi.org/10.1175/MWR-D-19-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., L. Raynaud, and L. Isaksen, 2011: Estimating background-error variances with the ECMWF ensemble of data assimilations system: Some effects of ensemble size and day-to-day variability. Quart. J. Roy. Meteor. Soc., 137, 423434, https://doi.org/10.1002/qj.756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., E. Hólm, L. Isaksen, and M. Fisher, 2016: The evolution of the ECMWF hybrid data assimilation system. Quart. J. Roy. Meteor. Soc., 142, 287303, https://doi.org/10.1002/qj.2652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2010: The THORPEX Interactive Grand Global Ensemble. Bull. Amer. Meteor. Soc., 91, 10591072, https://doi.org/10.1175/2010BAMS2853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description of single-observation experiments. Mon. Wea. Rev., 138, 15501566, https://doi.org/10.1175/2009MWR3157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586, https://doi.org/10.1175/2009MWR3158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., 2018: Ensemble forecasting and the need for calibration. Statistical Postprocessing of Ensemble Forecasts, S. Vannitsem, D. S. Wilks, and J. W. Messner, Eds., Elsevier Press, 15–48.

    • Crossref
    • Export Citation
  • Buizza, R., 2019: Introduction to the special issue on “25 years of ensemble forecasting.” Quart. J. Roy. Meteor. Soc., 145, 111, https://doi.org/10.1002/qj.3370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Candille, G., and O. Talagrand, 2008: Impact of observational error on the validation of ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 134, 959971, https://doi.org/10.1002/qj.268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, H. M., 2015: Decomposition of a new proper score for verification of ensemble forecasts. Mon. Wea. Rev., 143, 15171532, https://doi.org/10.1175/MWR-D-14-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, H. M., J. Berner, D. Coleman, and T. N. Palmer, 2017: Stochastic parameterization and El Niño–Southern Oscillation. J. Climate, 30, 1738, https://doi.org/10.1175/JCLI-D-16-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 472 pp.

  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. A. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2019a: IFS Documentation—Cy46r1 operational implementation 6 June 2019. Part IV: Physical processes. ECMWF, accessed 1 August 2020, https://www.ecmwf.int/en/elibrary/19308-part-iv-physical-processes.

  • ECMWF, 2019b: IFS Documentation—Cy46r1 operational implementation 6 June 2019. Part II: Data assimilation. ECMWF, accessed 1 August 2020, https://www.ecmwf.int/en/elibrary/19306-part-ii-data-assimilation.

  • Fairbairn, D., P. de Rosnay, and P. A. Browne, 2019: The new stand-along surface analysis at ECMWF: Implications for land–atmosphere DA coupling. J. Hydrometeor., 20, 20232042, https://doi.org/10.1175/JHM-D-19-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translation, 242 pp.

  • Gehne, M., T. M. Hamill, G. T. Bates, P. Pegion, and W. Kolczynski, 2019: Land surface parameter and state perturbations in the global ensemble forecast system. Mon. Wea. Rev., 147, 13191340, https://doi.org/10.1175/MWR-D-18-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., F. Balabdaoui, and A. E. Raftery, 2007: Probabilistic forecasts, calibration and sharpness. J. Roy. Stat. Soc., 69B, 243268, https://doi.org/10.1111/j.1467-9868.2007.00587.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., and J. Trentmann, 2016: Verification of cloudiness and radiation forecasts in the greater Alpine region. Meteor. Z., 25, 315, https://doi.org/10.1127/metz/2015/0630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., M. Janousek, J.-R. Bidlot, R. Buizza, L. Ferranti, F. Prates, and F. Vitart, 2018a: Evaluation of ECMWF forecasts, including the 2018 upgrade. ECMWF Tech. Memo. 831, 54 pp., https://www.ecmwf.int/sites/default/files/elibrary/2018/18746-evaluation-ecmwf-forecasts-including-2018-upgrade.pdf.

  • Haiden, T., and Coauthors, 2018b: Use of in situ surface observations at ECMWF. ECMWF Tech. Memo. 834, 28 pp., https://www.ecmwf.int/sites/default/files/elibrary/2018/18748-use-situ-surface-observations-ecmwf.pdf.

  • Haiden, T., I. Sandu, G. Balsamo, G. Arduini, and A. Beljaarsm, 2018c: Addressing biases in near-surface forecasts. ECMWF Newsletter, No. 157, ECMWF, Reading, United Kingdom, 20–25, https://www.ecmwf.int/en/newsletter/157.

  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560, https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2007: Ensemble calibration of 500 hPa geopotential height and 850 hPa and 2-meter temperatures using reforecasts. Mon. Wea. Rev., 135, 32733280, https://doi.org/10.1175/MWR3468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and M. Scheuerer, 2020: Benchmarking the raw model-generated background forecast in rapidly updated surface temperature analyses. Part II: Gridded benchmark. Mon. Wea. Rev., 148, 701717, https://doi.org/10.1175/MWR-D-19-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastie, T. J., and R. J. Tibshirani, 1990: Generalized Additive Models. Chapman & Hall, 335 pp.

  • Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, No. 59, ECMWF, Reading, United Kingdom, 7–24, https://www.ecmwf.int/node/19027.

  • Hogan, R., and Coauthors, 2017: Radiation in numerical weather prediction. ECMWF Tech. Memo. 816, 51 pp., http://ecmwf.int/sites/default/files/elibrary/2017/17771-radiation-numerical-weather-prediction.pdf.

  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289, https://doi.org/10.1256/qj.05.135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juricke, S., D. MacLeod, A. Weisheimer, L. Zanna, and T. N. Palmer, 2018: Seasonal to annual ocean forecasting skill and the role of model and observational uncertainty. Quart. J. Roy. Meteor. Soc., 144, 19471964, https://doi.org/10.1002/qj.3394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., M. Carrera, S. Belair, N. Gagnon, R. Frenette, M. Charron, and M. K. Yau, 2013: Impact of surface parameter uncertainties within the Canadian regional ensemble prediction system. Mon. Wea. Rev., 141, 15061526, https://doi.org/10.1175/MWR-D-11-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., 2010: Diagnosis of ensemble forecasting systems. Proc. Seminar on Diagnosis of Forecasting and Data Assimilation Systems, Reading, United Kingdom, ECMWF, 235–266.

  • Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteor. Soc., 143, 23152339, https://doi.org/10.1002/qj.3094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, L., 2017: Diagnostic methods for understanding the origin of forecast errors. Quart. J. Roy. Meteor. Soc., 143, 21292142, https://doi.org/10.1002/qj.3072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, https://doi.org/10.1002/qj.49712252905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morss, R. E., K. A. Emanuel, and C. M. Snyder, 2001: Idealized adaptive observation strategies for improving numerical weather prediction. J. Atmos. Sci., 58, 210232, https://doi.org/10.1175/1520-0469(2001)058<0210:IAOSFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munoz-Sabater, J., H. Lawrence, C. Albergel, P. de Rosnay, L. Isaksen, S. Mecklenburg, Y. Kerr, and M. Drusch, 2019: Assimilation of SMOS brightness temperatures in the ECMWF IFS. ECMWF Tech. Memo. 843, 38 pp., http://doi.org/10.21957/qq4v2o7oy.

    • Crossref
    • Export Citation
  • Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo, 2017: Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci., 21, 24832495, https://doi.org/10.5194/hess-21-2483-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304, https://doi.org/10.1002/qj.49712757202.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2006: Predictability of weather and climate: From theory to practice. Predictability of Weather and Climate, T. N. Palmer and R. Hagedorn, Eds., Cambridge Press, 1–29.

    • Crossref
    • Export Citation
  • Palmer, T. N., 2019a: The ECMWF ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years. Quart. J. Roy. Meteor. Soc., 145, 1224, https://doi.org/10.1002/qj.3383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2019b: Stochastic weather and climate models. Nat. Rev. Phys., 1, 463471, https://doi.org/10.1038/s42254-019-0062-2.

  • Rasmussen, C. E., and C. K. I. Williams, 2006: Gaussian Processes in Machine Learning. MIT Press, 248 pp.

    • Crossref
    • Export Citation
  • Richardson, D. S., 2000: Skill and economic value of the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 126, 649667, https://doi.org/10.1002/qj.49712656313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. S. Richardson, D. B. Parsons, and H. Wernli, 2018: Flow-dependent reliability: A path to more skillful ensemble forecasts. Bull. Amer. Meteor. Soc., 99, 10151026, https://doi.org/10.1175/BAMS-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saetra, Ø., H. Hersbach, J. R. Bidlot, and D. S. Richardson, 2004: Effects of observation errors on the statistics for ensemble spread and reliability. Mon. Wea. Rev., 132, 14871501, https://doi.org/10.1175/1520-0493(2004)132<1487:EOOEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, C., T. M. Hamill, and T. T. Warner, 2006: Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept. Mon. Wea. Rev., 134, 31743189, https://doi.org/10.1175/MWR3248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinbank, R., and Coauthors, 2016: The TIGGE project and its achievements. Bull. Amer. Meteor. Soc., 97, 4967, https://doi.org/10.1175/BAMS-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennant, W., and S. Beare, 2014: New schemes to perturb sea-surface temperature and soil moisture content in MOGREPS. Quart. J. Roy. Meteor. Soc., 140, 11501160, https://doi.org/10.1002/qj.2202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., Ed., 2011: Ensemble methods. Numerical Weather and Climate Prediction, Cambridge Press, 252–280.

    • Crossref
    • Export Citation
  • Weijs, S. V., and N. van de Giesen, 2011: Accounting for observational uncertainty in forecast verification: An information- theoretical view on forecasts, observations, and truth. Mon. Wea. Rev., 139, 21562162, https://doi.org/10.1175/2011MWR3573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., S. Corti, T. Palmer, and F. Vitart, 2014: Addressing model error through atmospheric stochastic physical parametrizations: Impact on the coupled ECMWF seasonal forecasting system. Philos. Trans. Roy. Soc., 372, 20130290, http://doi.org/10.1098/rsta.2013.0290.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, M., S. T. Lang, M. Leutbecher, M. J. Rodwell, G. Radnoti, and N. Bormann, 2016: Observation-based evaluation of ensemble reliability. Quart. J. Roy. Meteor. Soc., 142, 506514, https://doi.org/10.1002/qj.2675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., Z. Toth, R. Wobus, D. Richardson, and K. Mylne, 2002: The economic value of ensemble-based weather forecasts. Bull. Amer. Meteor. Soc., 83, 7384, https://doi.org/10.1175/1520-0477(2002)083<0073:TEVOEB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 79 79 58
Full Text Views 35 35 23
PDF Downloads 48 48 33

Improving Ensemble Weather Prediction System Initialization: Disentangling the Contributions from Model Systematic Errors and Initial Perturbation Size

View More View Less
  • 1 NOAA/Earth System Research Laboratory, Physical Sciences Laboratory, Boulder, Colorado
  • 2 Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Characteristics of the European Centre for Medium-Range Weather Forecast’s (ECMWF’s) 0000 UTC diagnosed 2-m temperatures (T2m) from 4D-Var and global ensemble forecasts initial conditions were examined in 2018 over the contiguous United States at 1/2° grid spacing. These were compared against independently generated, upscaled high-resolution T2m analyses that were created with a somewhat novel data assimilation methodology, an extension of classical optimal interpolation (OI) to surface data analysis. The analysis used a high-resolution, spatially detailed climatological background and was statistically unbiased. Differences of the ECMWF 4D-Var T2m initial states from the upscaled OI reference were decomposed into a systematic component and a residual component. The systematic component was determined by applying a temporal smoothing to the time series of differences between the ECMWF T2m analyses and the OI analyses. Systematic errors at 0000 UTC were commonly 1 K or more and larger in the mountainous western United States, with the ECMWF analyses cooler than the reference. The residual error is regarded as random in character and should be statistically consistent with the spread of the ensemble of initial conditions after inclusion of OI analysis uncertainty. This analysis uncertainty was large in the western United States, complicating interpretation. There were some areas suggestive of an overspread initial ensemble, with others underspread. Assimilation of more observations in the reference OI analysis would reduce analysis uncertainty, facilitating more conclusive determination of initial-condition ensemble spread characteristics.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-20-0119.s1.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas M. Hamill, Tom.Hamill@noaa.gov

Abstract

Characteristics of the European Centre for Medium-Range Weather Forecast’s (ECMWF’s) 0000 UTC diagnosed 2-m temperatures (T2m) from 4D-Var and global ensemble forecasts initial conditions were examined in 2018 over the contiguous United States at 1/2° grid spacing. These were compared against independently generated, upscaled high-resolution T2m analyses that were created with a somewhat novel data assimilation methodology, an extension of classical optimal interpolation (OI) to surface data analysis. The analysis used a high-resolution, spatially detailed climatological background and was statistically unbiased. Differences of the ECMWF 4D-Var T2m initial states from the upscaled OI reference were decomposed into a systematic component and a residual component. The systematic component was determined by applying a temporal smoothing to the time series of differences between the ECMWF T2m analyses and the OI analyses. Systematic errors at 0000 UTC were commonly 1 K or more and larger in the mountainous western United States, with the ECMWF analyses cooler than the reference. The residual error is regarded as random in character and should be statistically consistent with the spread of the ensemble of initial conditions after inclusion of OI analysis uncertainty. This analysis uncertainty was large in the western United States, complicating interpretation. There were some areas suggestive of an overspread initial ensemble, with others underspread. Assimilation of more observations in the reference OI analysis would reduce analysis uncertainty, facilitating more conclusive determination of initial-condition ensemble spread characteristics.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-20-0119.s1.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas M. Hamill, Tom.Hamill@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 2.65 MB)
Save