Evaluation of the Surface Wind Field over Land in WRF Simulations of Hurricane Wilma (2005). Part II: Surface Winds, Inflow Angles, and Boundary Layer Profiles

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL
  • 2 Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL
  • 3 Insurance Institute for Business and Home Safety, Richburg, SC and National Wind Institute, Texas Tech University, Lubbock, Texas
© Get Permissions
Restricted access

Abstract

This is the second of a two-part study that explores the capabilities of a mesoscale atmospheric model to reproduce the near-surface wind fields in hurricanes over land. The Weather Research and Forecasting Model (WRF) is used with two planetary boundary layer parameterizations: the Yonsei University (YSU) and the Mellor-Yamada-Janjić (MYJ) schemes. The first part presented the modeling framework and initial conditions used to produce simulations of Hurricane Wilma (2005) that closely reproduced the track, intensity, and size of its wind field as it passed over South Florida. This part explores how well these simulations can reproduce the winds at fixed points over land by making comparisons to observations from airports and research weather stations. The results show that peak wind speeds are remarkably well reproduced at several locations. Wind directions are evaluated in terms of the inflow angle relative to the storm center, and the simulated inflow angles are generally smaller than observed. Localized peak wind events are associated with vertical vorticity maxima in the boundary layer with horizontal scales of 5-10 km. The boundary layer winds are compared to wind profiles obtained by velocity-azimuth display (VAD) analyses from National Weather Service Doppler radars at Miami and Key West; results from these comparisons are mixed. Nonetheless the comparisons to surface observations suggest that when short-term hurricane forecasts can sufficiently predict storm track, intensity, and size, they will also be able to provide useful information on extreme winds at locations of interest.

Corresponding author address: Prof. David S. Nolan, Department of Atmospheric Sciences, 4600 Rickenbacker Causeway, Miami, FL 33149; email: dnolan@rsmas.miami.edu

Abstract

This is the second of a two-part study that explores the capabilities of a mesoscale atmospheric model to reproduce the near-surface wind fields in hurricanes over land. The Weather Research and Forecasting Model (WRF) is used with two planetary boundary layer parameterizations: the Yonsei University (YSU) and the Mellor-Yamada-Janjić (MYJ) schemes. The first part presented the modeling framework and initial conditions used to produce simulations of Hurricane Wilma (2005) that closely reproduced the track, intensity, and size of its wind field as it passed over South Florida. This part explores how well these simulations can reproduce the winds at fixed points over land by making comparisons to observations from airports and research weather stations. The results show that peak wind speeds are remarkably well reproduced at several locations. Wind directions are evaluated in terms of the inflow angle relative to the storm center, and the simulated inflow angles are generally smaller than observed. Localized peak wind events are associated with vertical vorticity maxima in the boundary layer with horizontal scales of 5-10 km. The boundary layer winds are compared to wind profiles obtained by velocity-azimuth display (VAD) analyses from National Weather Service Doppler radars at Miami and Key West; results from these comparisons are mixed. Nonetheless the comparisons to surface observations suggest that when short-term hurricane forecasts can sufficiently predict storm track, intensity, and size, they will also be able to provide useful information on extreme winds at locations of interest.

Corresponding author address: Prof. David S. Nolan, Department of Atmospheric Sciences, 4600 Rickenbacker Causeway, Miami, FL 33149; email: dnolan@rsmas.miami.edu
Save