• Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nat. Geosci., 8, 278283, https://doi.org/10.1038/ngeo2385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. J. Molina, and V. A. Gensini, 2018: Modulation of annual cycle of tornadoes by El Niño–Southern Oscillation. Geophys. Res. Lett., 45, 57085717, https://doi.org/10.1029/2018GL077482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arcodia, M. C., B. P. Kirtman, and L. S. P. Siqueira, 2020: How MJO teleconnections and ENSO interference impacts U.S. precipitation. J. Climate, 33, 46214640, https://doi.org/10.1175/JCLI-D-19-0448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baggett, C. F., K. M. Nardi, S. J. Childs, S. N. Zito, E. A. Barnes, and E. D. Maloney, 2018: Skillful subseasonal forecasts of weekly tornado and hail activity using the Madden–Julian Oscillation. J. Geophys. Res. Atmos., 123, 12 66112 675, https://doi.org/10.1029/2018JD029059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., and V. A. Gensini, 2013: Variability of central United States April–May tornado day likelihood by phase of the Madden–Julian Oscillation. Geophys. Res. Lett., 40, 27902795, https://doi.org/10.1002/grl.50522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., and H. van den Dool, 2016: Probabilistic seasonal forecasts in the North American Multimodel Ensemble: A baseline skill assessment. J. Climate, 29, 30153026, https://doi.org/10.1175/JCLI-D-14-00862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, https://doi.org/10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childs, S. J., R. S. Schumacher, and J. T. Allen, 2018: Cold-season tornadoes: Climatological and meteorological insights. Wea. Forecasting, 33, 671691, https://doi.org/10.1175/WAF-D-17-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J. E., A. Timmermann, and J. Y. Lee, 2019: North American April tornado occurrences linked to global sea surface temperature anomalies. Sci. Adv., 5, eaaw9950, https://doi.org/10.1126/sciadv.aaw9950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, A. R., and J. T. Schaefer, 2008: The relation of El Niño–Southern Oscillation (ENSO) to winter tornado outbreaks. Mon. Wea. Rev., 136, 31213137, https://doi.org/10.1175/2007MWR2171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, A. R., L. M. Leslie, D. B. Parsons, and J. T. Schaefer, 2017: The impact of the El Niño–Southern Oscillation (ENSO) on winter and early spring U.S. tornado outbreaks. J. Appl. Meteor. Climatol., 56, 24552478, https://doi.org/10.1175/JAMC-D-16-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and H. M. Widen, 2014: Predicting spring tornado activity in the central Great Plains by 1 March. Mon. Wea. Rev., 142, 259267, https://doi.org/10.1175/MWR-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and A. Marinaro, 2016: Tornado frequency in the United States related to global relative angular momentum. Mon. Wea. Rev., 144, 801810, https://doi.org/10.1175/MWR-D-15-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., D. Gold, J. T. Allen, and B. S. Barrett, 2019: Extended U.S. tornado outbreak during late May 2019: A forecast of opportunity. Geophys. Res. Lett., 46, 10 15010 158, https://doi.org/10.1029/2019GL084470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. Juras, 2006: Measuring forecast skill: Is it real skill or is it the varying climatology? Quart. J. Roy. Meteor. Soc., 132, 29052923, https://doi.org/10.1256/qj.06.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, L. O., Jr., K. R. Hammond, C. M. Lusk, and E. F. Mross, 1992: The application of signal detection theory to weather forecasting behavior. Mon. Wea. Rev., 120, 863883, https://doi.org/10.1175/1520-0493(1992)120<0863:TAOSDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Infanti, J. M., and B. P. Kirtman, 2014: Southeastern U.S. rainfall prediction in the North American Multimodel Ensemble. J. Hydrometeor., 15, 529550, https://doi.org/10.1175/JHM-D-13-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., D. C. Collins, S. B. Feldstein, M. L. L’Heureux, and E. E. Riddle, 2014: Skillful wintertime North American temperature forecasts out to 4 weeks based on the state of ENSO and the MJO. Wea. Forecasting, 29, 2338, https://doi.org/10.1175/WAF-D-13-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, E., and B. P. Kirtman, 2016: Can we predict seasonal changes in high impact weather in the United States? Environ. Res. Lett., 11, 074018, https://doi.org/10.1088/1748-9326/11/7/074018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. W. Zwiers, 2003: On the ROC score of probability forecasts. J. Climate, 16, 41454150, https://doi.org/10.1175/1520-0442(2003)016<4145:OTRSOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., S.-K. Lee, and H. Lopez, 2020: Madden–Julian oscillation–induced suppression of northeast Pacific convection increases U.S. tornadogenesis. J. Climate, 33, 49274939, https://doi.org/10.1175/JCLI-D-19-0992.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., R. Atlas, D. Enfield, C. Wang, and H. Liu, 2013: Is there an optimal ENSO pattern that enhances large-scale atmospheric processes conducive to tornado outbreaks in the United States? J. Climate, 26, 16261642, https://doi.org/10.1175/JCLI-D-12-00128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., A. T. Wittenberg, D. B. Enfield, S. J. Weaver, C. Wang, and R. Atlas, 2016: U.S. regional tornado outbreaks and their links to spring ENSO phases and North Atlantic SST variability. Environ. Res. Lett., 11, 044008, https://doi.org/10.1088/1748-9326/11/4/044008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lepore, C., M. K. Tippett, and J. T. Allen, 2017: ENSO-based probabilistic forecasts of March–May U.S. tornado and hail activity. Geophys. Res. Lett., 44, 90939101, https://doi.org/10.1002/2017GL074781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lepore, C., M. K. Tippett, and J. T. Allen, 2018: CFSv2 monthly forecasts of tornado and hail activity. Wea. Forecasting, 33, 12831297, https://doi.org/10.1175/WAF-D-18-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, H., and B. P. Kirtman, 2014: WWBs, ENSO predictability, the spring barrier and extreme events. J. Geophys. Res. Atmos., 119, 10 11410 138, https://doi.org/10.1002/2014JD021908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, P. T., H. E. Brooks, and D. J. Karoly, 2007: Assessment of the severe weather environment in North America simulated by a global climate model. Atmos. Sci. Lett., 8, 100106, https://doi.org/10.1002/asl.159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzban, C., and J. Schaefer, 2001: The correlation between U.S. tornados and Pacific sea surface temperatures. Mon. Wea. Rev., 129, 884895, https://doi.org/10.1175/1520-0493(2001)129<0884:TCBUST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and N. E. Graham, 1999: Conditional probabilities, relative operating characteristics, and relative operating levels. Wea. Forecasting, 14, 713725, https://doi.org/10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. E., Z. Wang, R. J. Trapp, and D. S. Harnos, 2020: Hybrid prediction of weekly tornado activity out to Week 3: Utilizing weather regimes. Geophys. Res. Lett., 47, e2020GL087253, https://doi.org/10.1029/2020GL087253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, M. J., and J. T. Allen, 2019: On the moisture origins of tornadic thunderstorms. J. Climate, 32, 43214346, https://doi.org/10.1175/JCLI-D-18-0784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, M. J., R. P. Timmer, and J. T. Allen, 2016: Importance of the Gulf of Mexico as a climate driver for U.S. severe thunderstorm activity. Geophys. Res. Lett., 43, 12 29512 304, https://doi.org/10.1002/2016GL071603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, M. J., J. T. Allen, and V. A. Gensini, 2018: The Gulf of Mexico and ENSO influence on subseasonal and seasonal CONUS winter tornado variability. J. Appl. Meteor. Climatol., 57, 24392463, https://doi.org/10.1175/JAMC-D-18-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, J. Y., B. Wang, and K. J. Ha, 2011: ENSO regulation of MJO teleconnection. Climate Dyn., 37, 11331149, https://doi.org/10.1007/s00382-010-0902-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, T. W., and M. P. McGuire, 2020: Tornado-days in the United States by phase of the Madden–Julian oscillation and global wind oscillation. Climate Dyn., 54, 1736, https://doi.org/10.1007/s00382-019-04983-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mosteller, F., and J. W. Tukey, 1977: Data Analysis and Regression: A Second Course in Statistics. Addison-Wesley, 586 pp.

  • Muñoz, E., and D. E. Enfield, 2011: The boreal spring variability of the Intra-Americas low-level jet and its relation with precipitation and tornadoes in the eastern United States. Climate Dyn., 36, 247259, https://doi.org/10.1007/s00382-009-0688-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., M. B. Stoner, N. C. Johnson, M. L. L’Heureux, D. C. Collins, and S. B. Feldstein, 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 17491766, https://doi.org/10.1007/s00382-012-1493-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., K. MacRitchie, J. Asuma, and T. Melino, 2010: Modulation of the global atmospheric circulation by combined activity in the Madden–Julian oscillation and the El Niño–Southern Oscillation during boreal winter. J. Climate, 23, 40454059, https://doi.org/10.1175/2010JCLI3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saide, P. E., and Coauthors, 2015: Central American biomass burning smoke can increase tornado severity in the U.S. Geophys. Res. Lett., 42, 956965, https://doi.org/10.1002/2014GL062826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swets, J. A., 1973: The relative operating characteristic in psychology. Science, 182, 9901000, https://doi.org/10.1126/science.182.4116.990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. B., and P. E. Roundy, 2013: The relationship between the Madden–Julian Oscillation and U.S. violent tornado outbreaks in the spring. Mon. Wea. Rev., 141, 20872095, https://doi.org/10.1175/MWR-D-12-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., 2018: Robustness of relations between the MJO and U.S. tornado occurrence. Mon. Wea. Rev., 146, 38733884, https://doi.org/10.1175/MWR-D-18-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. H. Sobel, and S. J. Camargo, 2012: Association of U.S. tornado occurrence with monthly environmental parameters. Geophys. Res. Lett., 39, L02801, https://doi.org/10.1029/2011GL050368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and K. A. Hoogewind, 2018: Exploring a possible connection between U.S. tornado activity and Arctic sea ice. npj Climate Atmos. Sci., 1, 14, https://doi.org/10.1038/s41612-018-0025-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., and Z. Toth, 1991: Why do forecasts for “near normal” often fail? Wea. Forecasting, 6, 7685, https://doi.org/10.1175/1520-0434(1991)006<0076:WDFFNO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, https://doi.org/10.1175/WAF910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., S. Baxter, and A. Kumar, 2012: Climatic role of North American low-level jets on U.S. regional tornado activity. J. Climate, 25, 66666683, https://doi.org/10.1175/JCLI-D-11-00568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 173 173 156
Full Text Views 73 73 58
PDF Downloads 99 99 82

A Seasonal Probabilistic Outlook for Tornadoes (SPOTter) in the Contiguous United States Based on the Leading Patterns of Large-Scale Atmospheric Anomalies

View More View Less
  • 1 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • 2 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
  • 3 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • 4 NOAA/Climate Prediction Center, College Park, Maryland
© Get Permissions
Restricted access

Abstract

This study presents an experimental model for Seasonal Probabilistic Outlook for Tornadoes (SPOTter) in the contiguous United States for March, April, and May and evaluates its forecast skill. This forecast model uses the leading empirical orthogonal function modes of regional variability in tornadic environmental parameters (i.e., low-level vertical wind shear and convective available potential energy), derived from the NCEP Coupled Forecast System, version 2, as the primary predictors. A multiple linear regression is applied to the predicted modes of tornadic environmental parameters to estimate U.S. tornado activity, which is presented as the probability for above-, near-, and below-normal categories. The initial forecast is carried out in late February for March–April U.S. tornado activity and then is updated in late March for April–May activity. A series of reforecast skill tests, including the jackknife cross-validation test, shows that the probabilistic reforecast is overall skillful for predicting the above- and below-normal area-averaged activity in the contiguous United States for the target months of both March–April and April–May. The forecast model also successfully reforecasts the 2011 super-tornado-outbreak season and the other three most active U.S. tornado seasons in 1982, 1991, and 2008, and thus it may be suitable for an operational use for predicting future active and inactive U.S. tornado seasons. However, additional tests show that the regional reforecast is skillful for March–April activity only in the Ohio Valley and South and for April–May activity only in the Southeast and Upper Midwest. These and other limitations of the current model, along with the future advances needed to improve the U.S. regional-scale tornado forecast, are discussed.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Sang-Ki Lee, sang-ki.lee@noaa.gov

Abstract

This study presents an experimental model for Seasonal Probabilistic Outlook for Tornadoes (SPOTter) in the contiguous United States for March, April, and May and evaluates its forecast skill. This forecast model uses the leading empirical orthogonal function modes of regional variability in tornadic environmental parameters (i.e., low-level vertical wind shear and convective available potential energy), derived from the NCEP Coupled Forecast System, version 2, as the primary predictors. A multiple linear regression is applied to the predicted modes of tornadic environmental parameters to estimate U.S. tornado activity, which is presented as the probability for above-, near-, and below-normal categories. The initial forecast is carried out in late February for March–April U.S. tornado activity and then is updated in late March for April–May activity. A series of reforecast skill tests, including the jackknife cross-validation test, shows that the probabilistic reforecast is overall skillful for predicting the above- and below-normal area-averaged activity in the contiguous United States for the target months of both March–April and April–May. The forecast model also successfully reforecasts the 2011 super-tornado-outbreak season and the other three most active U.S. tornado seasons in 1982, 1991, and 2008, and thus it may be suitable for an operational use for predicting future active and inactive U.S. tornado seasons. However, additional tests show that the regional reforecast is skillful for March–April activity only in the Ohio Valley and South and for April–May activity only in the Southeast and Upper Midwest. These and other limitations of the current model, along with the future advances needed to improve the U.S. regional-scale tornado forecast, are discussed.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Sang-Ki Lee, sang-ki.lee@noaa.gov
Save