• Aldrian, E., and R. Dwi Susanto, 2003: Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol., 23, 14351452, https://doi.org/10.1002/joc.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arafat, Y., M. Saleh Pallu, F. Maricar, and R. T. Lopa, 2015: Morphology evolution of lower Jeneberang River, Indonesia. Int. J. Earth. Sci. Eng., 8, 256258.

    • Search Google Scholar
    • Export Citation
  • Aryastana, P., T. Tanaka, and M. Mahendra, 2015: Characteristic of rainfall pattern before flood occur in Indonesia based on rainfall data from GSMaP. Ecotrophic J. Environ. Sci., 7, 100110.

    • Search Google Scholar
    • Export Citation
  • Baranowski, D. B., M. K. Flatau, P. J. Flatau, and A. J. Matthews, 2016a: Impact of atmospheric convectively coupled equatorial Kelvin waves on upper ocean variability. J. Geophys. Res. Atmos., 121, 20452059, https://doi.org/10.1002/2015JD024150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baranowski, D. B., M. K. Flatau, P. J. Flatau, and A. J. Matthews, 2016b: Phase locking between atmospheric convectively coupled equatorial Kelvin waves and the diurnal cycle of precipitation over the Maritime Continent. Geophys. Res. Lett., 43, 82698276, https://doi.org/10.1002/2016GL069602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baranowski, D. B., D. E. Waliser, X. Jiang, J. A. Ridout, and M. K. Flatau, 2019: Contemporary GCM fidelity in representing the diurnal cycle of precipitation over the Maritime Continent. J. Geophys. Res. Atmos., 124, 747769, https://doi.org/10.1029/2018JD029474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baranowski, D. B., and et al. , 2020: Social-media and newspaper reports reveal large-scale meteorological drivers of floods on Sumatra. Nat. Commun., 11, 2503, https://doi.org/10.1038/s41467-020-16171-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, https://doi.org/10.1175/JAM2331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., S. Webster, S. C. Peatman, D. J. Parker, A. J. Matthews, Y. Li, and M. E. Hassim, 2016: Scale interactions between the MJO and the western maritime continent. J. Climate, 29, 24712492, https://doi.org/10.1175/JCLI-D-15-0557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BMKG, 2019: Online database. Agency for Meteorology, Climatology and Geophysics of the Republic of Indonesia [Badan Meteorologi, Klimatologi, dan Geofisika (BMKG)], accessed 24 October 2019, http:/dataonline.bmkg.go.id/.

  • BNPB, 2019: Online database. Indonesian National Agency for Disaster Countermeasure [Badan Nasional Penanggulangan Bencana (BNPB)], accessed 15 March 2019, http:/bnpb.cloud/dibi/tabel1b.

  • Central Bureau of Statistics, 2017: Population of Makassar. Central Bureau of Statistics (Badan Pusat Statistik), accessed 18 November 2019, https://makassarkota.bps.go.id/statictable/2017/04/26/6/jumlah-penduduk-kota-makassar-menurut-kecamatan-tahun-2016.html.

  • Chang, C. P., Z. Wang, J. McBride, and C. H. Liu, 2005: Annual cycle of Southeast Asia–Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287301, https://doi.org/10.1175/JCLI-3257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W. T., S. P. Hsu, Y. H. Tsai, and C. H. Sui, 2019: The influences of convectively coupled Kelvin waves on multiscale rainfall variability over the South China Sea and Maritime Continent in December 2016. J. Climate, 32, 69776993, https://doi.org/10.1175/JCLI-D-18-0471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Condom, T., P. Rau, and J. C. Espinoza, 2011: Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998-2007. Hydrol. Processes, 25, 19241933, https://doi.org/10.1002/hyp.7949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, (C3S), 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), accessed 14 May 2019, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Davis, C. A., and S. B. Trier, 2002: Cloud-resolving simulations of mesoscale vortex intensification and its effect on a serial mesoscale convective system. Mon. Wea. Rev., 130, 28392858, https://doi.org/10.1175/1520-0493(2002)130<2839:CRSOMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, J., and O. Pauluis, 2011: Modulations of the phase speed of convectively coupled Kelvin waves by the ITCZ. J. Atmos. Sci., 68, 14461459, https://doi.org/10.1175/2011JAS3630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, J., N. Sakaeda, G. N. Kiladis, and K. Kikuchi, 2017: Influences of the MJO on the space-time organization of tropical convection. J. Geophys. Res. Atmos., 122, 80128032, https://doi.org/10.1002/2017JD026526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, R. A. Houze Jr., S. Hagos, J. Hardin, Q. Yang, B. Han, and J. Fan, 2018: Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst., 10, 14701494, https://doi.org/10.1029/2018MS001305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., and et al. , 2021: A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking. J. Geophys. Res. Atmos., https://doi.org/10.1029/2020JD034202, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrett, S., G. Yang, S. Woolnough, J. Methven, K. Hodges, and C. Holloway, 2019: Linking extreme precipitation in Southeast Asia to equatorial waves. Quart. J. Roy. Meteor. Soc., 146, 665684, https://doi.org/10.1002/qj.3699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fine, C. M., R. H. Johnson, P. E. Ciesielski, and R. K. Taft, 2016: The role of topographically induced vortices in tropical cyclone formation over the Indian Ocean. Mon. Wea. Rev., 144, 48274847, https://doi.org/10.1175/MWR-D-16-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabella, M., and R. Notarpietro, 2002: Ground clutter characterization and elimination in mountainous terrain. Second European Conf. on Radar Meteorology, Delft, Netherlands, European Meteorological Society and Copernicus Gesellschaft mbH, 305–311.

  • GHRSST, 2019: The Group for High Resolution Sea Surface Temperature (GHRSST) Multiscale Ultrahigh Resolution (MUR) SST data. JPL MUR MEaSUREs Project, accessed 5 June 2019, https://podaac-opendap.jpl.nasa.gov/opendap/allData/ghrsst/data/GDS2/L4/GLOB/JPL/MUR/v4.1/.

  • Guo, Y., X. Jiang, and D. E. Waliser, 2014: Modulation of the convectively coupled Kelvin waves over South America and the tropical Atlantic Ocean in association with the Madden–Julian oscillation. J. Atmos. Sci., 71, 13711388, https://doi.org/10.1175/JAS-D-13-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heistermann, M., S. Jacobi, and T. Pfaff, 2013: An open source library for processing weather radar data (wradlib). Hydrol. Earth Syst. Sci., 17, 863871, https://doi.org/10.5194/hess-17-863-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22, https://doi.org/10.1007/978-90-481-2915-7_1.

    • Crossref
    • Export Citation
  • Huffman, G. J., D. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, and P. Xie, 2014: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.4, 30 pp., https://pps.gsfc.nasa.gov/Documents/IMERG_ATBD_V4.pdf.

  • Huffman, G. J., D. T. Stocker, E. J. Bolvin, J. T. Nelkin, and T. Jackson, 2019: GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree × 0.1 degree V06. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 30 September 2019, https://doi.org/10.5067/GPM/IMERG/3B-HH/06.

    • Crossref
    • Export Citation
  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205218, https://doi.org/10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X., J. Ge, and S. Wang, 2016: Diverse impacts of ENSO on wintertime rainfall over the Maritime Continent. Int. J. Climatol., 36, 33843397, https://doi.org/10.1002/joc.4562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, S. J., and et al. , 2016: The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35 AGCM. Climate Dyn., 46, 807831, https://doi.org/10.1007/s00382-015-2614-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jongman, B., H. C. Winsemius, J. C. J. H. Aerts, E. Coughlan de Perez, M. K. van Aalst, W. Kron, and P. J. Ward, 2015: Declining vulnerability to river floods and the global benefits of adaptation. Proc. Natl. Acad. Sci. USA, 112, E2271E2280, https://doi.org/10.1073/pnas.1414439112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, https://doi.org/10.1175/JAS3520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krämer, S., and H. R. Verworn, 2009: Improved radar data processing algorithms for quantitative rainfall estimation in real time. Water Sci. Technol., 60, 175184, https://doi.org/10.2166/wst.2009.282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and A. Kulkarni, 1997: Rainfall variability over South-east Asia—Connections with Indian monsoon and ENSO extremes: New perspectives. Int. J. Climatol., 17, 11551168, https://doi.org/10.1002/(SICI)1097-0088(199709)17:11<1155::AID-JOC188>3.0.CO;2-B.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latos, B., and Z. Feng, 2020: Mesoscale convective systems-driven precipitation over the central Maritime Continent during January 21–22, 2019. Figshare, accessed 4 September 2020, https://doi.org/10.6084/m9.figshare.12758744.v1.

    • Crossref
    • Export Citation
  • Latos, B., and D. Permana, 2020: The maximum of the PPI reflectivity estimated by C-band Doppler radar located in Maros, southwest Sulawesi during January 20–23, 2019. Figshare, accessed 4 September 2020, https://doi.org/10.6084/m9.figshare.12758741.v1.

    • Crossref
    • Export Citation
  • Liao, Z., Y. Hong, J. Wang, H. Fukuoka, K. Sassa, D. Karnawati, and F. Fathani, 2010: Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets. Landslides, 7, 317324, https://doi.org/10.1007/s10346-010-0219-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) OLR dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

  • Lim, S. Y., C. Marzin, P. Xavier, C. P. Chang, and B. Timbal, 2017: Impacts of boreal winter monsoon cold surges and the interaction with MJO on Southeast Asia rainfall. J. Climate, 30, 42674281, https://doi.org/10.1175/JCLI-D-16-0546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Love, B. S., A. J. Matthews, and G. M. Lister, 2011: The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. Quart. J. Roy. Meteor. Soc., 137, 934947, https://doi.org/10.1002/qj.809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubis, S. W., and C. Jacobi, 2015: The modulating influence of convectively coupled equatorial waves (CCEWs) on the variability of tropical precipitation. Int. J. Climatol., 35, 14651483, https://doi.org/10.1002/joc.4069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubis, S. W., and M. R. Respati, 2021: Impacts of convectively coupled equatorial waves on rainfall extremes in Java, Indonesia. Int. J. Climatol., 41, 24182440, https://doi.org/10.1002/joc.6967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmud, M. R., M. Hashim, and M. N. M. Reba, 2017: How effective is the new generation of GPM satellite precipitation in characterizing the rainfall variability over Malaysia? Asia-Pac. J. Atmos. Sci., 53, 375384, https://doi.org/10.1007/s13143-017-0042-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., B. Khouider, G. N. Kiladis, K. H. Straub, and M. G. Shefter, 2004: A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61, 21882205, https://doi.org/10.1175/1520-0469(2004)061<2188:AMFCCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, https://doi.org/10.1016/j.dynatmoce.2006.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., R. C. Langille, and W. M. K. Palmer, 1947: Measurement of rainfall by radar. J. Meteor., 4, 186192, https://doi.org/10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., G. Pickup, S. C. Peatman, P. Clews, and J. Martin, 2013: The effect of the Madden-Julian Oscillation on station rainfall and river level in the Fly River system, Papua New Guinea. J. Geophys. Res. Atmos., 118, 10 92610 935, https://doi.org/10.1002/jgrd.50865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Measey, M., 2010: Indonesia: A vulnerable country in the face of climate change. Global Maj. E-J., 1, 3145.

  • Moron, V., A. W. Robertson, J. H. Qian, and M. Ghil, 2015: Weather types across the Maritime Continent: From the diurnal cycle to interannual variations. Front. Environ. Sci., 2, 65, https://doi.org/10.3389/fenvs.2014.00065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muis, S., B. Güneralp, B. Jongman, J. C. Aerts, and P. J. Ward, 2015: Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data. Sci. Total Environ., 538, 445457, https://doi.org/10.1016/j.scitotenv.2015.08.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paski, J. A. I., I. J. Saragih, D. S. Permana, M. I. Hastuti, A. Kristianto, and E. E. Makmur, 2019: Simulation of land-sea breeze effect on the diurnal cycle of convective activity in the Eastern Coast of North Sumatra using WRF model. 2019 IEEE Asia-Pacific Conf. on Geoscience, Electronics and Remote Sensing Technology (AGERS), Jakarta, Indonesia, IEEE, 67–71, https://doi.org/10.1109/AGERS48446.2019.9034301.

    • Crossref
    • Export Citation
  • Paski, J. A. I., F. Alfahmi, D. S. Permana, and E. E. S. Makmur, 2020: Reconstruction of extreme rainfall event on September 19–20, 2017, using a weather radar in Bengkulu of Sumatra island. Sci. World J., 2020, 1639054, https://doi.org/10.1155/2020/1639054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulus, A., and S. Shanas, 2017: Atmospheric study of the impact of cold surges and Borneo vortex over Western Indonesia maritime continent area. J. Climatol. Wea. Forecasting, 5, 1000189, https://doi.org/10.4172/2332-2594.1000189.

    • Search Google Scholar
    • Export Citation
  • Pawitan, H., A. Jayawardena, K. Takeuchi, and S. Lee, 2002: Jeneberang River. Catalogue of Rivers for Southeast Asia and the Pacific, R. Ibbitt et al., Eds., Vol IV, The UNESCO-IHP Regional Steering Committee for Southeast Asia and the Pacific, 63–74.

  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden-Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140, 814825, https://doi.org/10.1002/qj.2161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pramuwardani, I., H. Sunarto, and A. Sopaheluwakan, 2020: The interaction between local factors and the convectively coupled equatorial waves over Indonesia during the western North Pacific and Australian monsoon phase. Meteor. Hydrol. Water Manage., 8, 8489.

    • Search Google Scholar
    • Export Citation
  • PUPR, 2019: Indonesian Directorate General of Water Resources. Ministry of Public Works and Public Housing [Gedung Ditjen Sumber Daya Air, Kementerian (PUPR)], The Communication Bureau (Biro Komunikasi Publik), accessed 3 October 2019, http://sda.pu.go.id/.

  • Qian, J.-H., 2008: Why precipitation is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci., 65, 14281441, https://doi.org/10.1175/2007JAS2422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., 2020: Mechanisms for the dipolar patterns of rainfall variability over large islands in the Maritime Continent associated with the Madden–Julian oscillation. J. Atmos. Sci., 77, 22572278, https://doi.org/10.1175/JAS-D-19-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “maritime continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365370, https://doi.org/10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauniyar, S., A. Protat, and H. Kanamori, 2017: Uncertainties in TRMM-ERA multisatellite-based tropical rainfall estimates over the Maritime Continent. Earth Space Sci., 4, 275302, https://doi.org/10.1002/2017EA000279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077, https://doi.org/10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridout, J. A., and M. K. Flatau, 2011: Convectively coupled Kelvin wave propagation past Sumatra: A June case and corresponding composite analysis. J. Geophys. Res., 116, D07106, https://doi.org/10.1029/2010JD014981.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 13421359, https://doi.org/10.1175/2007JAS2345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2015: On the interpretation of EOF analysis of ENSO, atmospheric Kelvin waves, and the MJO. J. Climate, 28, 11481165, https://doi.org/10.1175/JCLI-D-14-00398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, https://doi.org/10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and X. Chen, 2020: Island rainfall enhancement in the Maritime Continent. Geophys. Res. Lett., 47, e2019GL086545, https://doi.org/10.1029/2019GL086545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N., B. Goswami, P. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., G. Kiladis, and J. Dias, 2020: The diurnal cycle of rainfall and the convectively coupled equatorial waves over the Maritime Continent. J. Climate, 33, 33073331, https://doi.org/10.1175/JCLI-D-19-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salahuddin, A., and S. Curtis, 2011: Climate extremes in Malaysia and the equatorial South China Sea. Global Planet. Change, 78, 8391, https://doi.org/10.1016/j.gloplacha.2011.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekaranom, A. B., and H. Masunaga, 2017: Comparison of TRMM-derived rainfall products for general and extreme rains over the Maritime Continent. J. Appl. Meteor. Climatol., 56, 18671881, https://doi.org/10.1175/JAMC-D-16-0272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., A. Rowe, D. K. Adams, and G. N. Kiladis, 2020: Kelvin waves during GOAmazon and their relationship to deep convection. J. Atmos. Sci., 77, 35333550, https://doi.org/10.1175/JAS-D-20-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., T. D. Keenan, B. Ferrier, R. H. Simpson, and G. J. Holland, 1993: Cumulus mergers in the Maritime Continent region. Meteor. Atmos. Phys., 51, 7399, https://doi.org/10.1007/BF01080881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053, https://doi.org/10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiartha, N., K. Ogawara, T. Tanaka, and M. S. Mahendra, 2017: Application of GSMaP product and rain gauge data for monitoring rainfall condition of flood events in Indonesia. Int. J. Environ. Geosci., 1, 3647, https://doi.org/10.24843/ijeg.2017.v01.i01.p05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tangang, F. T., L. Juneng, E. Salimun, P. N. Vinayachandran, Y. K. Seng, C. J. C. Reason, S. K. Behera, and T. Yasunari, 2008: On the roles of the northeast cold surge, the Borneo vortex, the Madden–Julian Oscillation, and the Indian Ocean Dipole during the extreme 2006/2007 flood in southern Peninsular Malaysia. Geophys. Res. Lett., 35, L14S07, https://doi.org/10.1029/2008GL033429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. Nguyen, 2015: Encyclopedia of atmospheric sciences. Encyclopedia of Atmospheric Sciences, 2nd ed. G. R. North, J. Pyle, and F. Zhang, Eds., Vol. 6, Academic Press, 102–112, https://doi.org/10.1016/B978-0-444-64046-8.00067-7.

    • Crossref
    • Export Citation
  • Xavier, P., and et al. , 2020: Seasonal dependence of cold surges and their interaction with the Madden–Julian oscillation over Southeast Asia. J. Climate, 33, 24672482, https://doi.org/10.1175/JCLI-D-19-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2015: Morphology, intensity, and rainfall production of MJO convection: Observations from DYNAMO shipborne radar and TRMM. J. Atmos. Sci., 72, 623640, https://doi.org/10.1175/JAS-D-14-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamanaka, M. D., S.-Y. Ogino, P.-M. Wu, H. Jun-Ichi, S. Mori, J. Matsumoto, and F. Syamsudin, 2018: Maritime Continent coastlines controlling Earth’s climate. Prog. Earth Planet. Sci., 5, 21, https://doi.org/10.1186/s40645-018-0174-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. Mapes, 2012: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part II: Composite analysis based on space–time filtering. J. Atmos. Sci., 69, 1734, https://doi.org/10.1175/JAS-D-11-034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, T., S. Yang, X. Jiang, and P. Zhao, 2016: Seasonal-interannual variation and prediction of wet and dry season rainfall over the Maritime Continent: Roles of ENSO and monsoon circulation. J. Climate, 29, 36753695, https://doi.org/10.1175/JCLI-D-15-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 137 137 137
Full Text Views 35 35 35
PDF Downloads 47 47 47

Equatorial Waves Triggering Extreme Rainfall and Floods in Southwest Sulawesi, Indonesia

View More View Less
  • 1 Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
  • | 2 École Nationale de la Météorologie, Météo-France, Toulouse, France
  • | 3 Naval Research Laboratory, Monterey, California
  • | 4 Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 5 Agency for Meteorology, Climatology and Geophysics of the Republic of Indonesia, Jakarta, Indonesia
  • | 6 Centre National de Recherches Météorologiques, Météo-France, Toulouse, France
  • | 7 Pacific Northwest National Laboratory, Richland, Washington
  • | 8 Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, and School of Mathematics, University of East Anglia, Norwich, United Kingdom
© Get Permissions
Restricted access

Abstract

On the basis of detailed analysis of a case study and long-term climatology, it is shown that equatorial waves and their interactions serve as precursors for extreme rain and flood events in the central Maritime Continent region of southwest Sulawesi, Indonesia. Meteorological conditions on 22 January 2019 leading to heavy rainfall and devastating flooding in this area are studied. It is shown that a convectively coupled Kelvin wave (CCKW) and a convectively coupled equatorial Rossby wave (CCERW) embedded within the larger-scale envelope of the Madden–Julian oscillation (MJO) enhanced convective phase, contributed to the onset of a mesoscale convective system that developed over the Java Sea. Low-level convergence from the CCKW forced mesoscale convective organization and orographic ascent of moist air over the slopes of southwest Sulawesi. Climatological analysis shows that 92% of December–February floods and 76% of extreme rain events in this region were immediately preceded by positive low-level westerly wind anomalies. It is estimated that both CCKWs and CCERWs propagating over Sulawesi double the chance of floods and extreme rain event development, while the probability of such hazardous events occurring during their combined activity is 8 times greater than on a random day. While the MJO is a key component shaping tropical atmospheric variability, it is shown that its usefulness as a single factor for extreme weather-driven hazard prediction is limited.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Beata Latos, blatos@igf.edu.pl

This article is included in the YMC: Years of the Maritime Continent special collection.

Abstract

On the basis of detailed analysis of a case study and long-term climatology, it is shown that equatorial waves and their interactions serve as precursors for extreme rain and flood events in the central Maritime Continent region of southwest Sulawesi, Indonesia. Meteorological conditions on 22 January 2019 leading to heavy rainfall and devastating flooding in this area are studied. It is shown that a convectively coupled Kelvin wave (CCKW) and a convectively coupled equatorial Rossby wave (CCERW) embedded within the larger-scale envelope of the Madden–Julian oscillation (MJO) enhanced convective phase, contributed to the onset of a mesoscale convective system that developed over the Java Sea. Low-level convergence from the CCKW forced mesoscale convective organization and orographic ascent of moist air over the slopes of southwest Sulawesi. Climatological analysis shows that 92% of December–February floods and 76% of extreme rain events in this region were immediately preceded by positive low-level westerly wind anomalies. It is estimated that both CCKWs and CCERWs propagating over Sulawesi double the chance of floods and extreme rain event development, while the probability of such hazardous events occurring during their combined activity is 8 times greater than on a random day. While the MJO is a key component shaping tropical atmospheric variability, it is shown that its usefulness as a single factor for extreme weather-driven hazard prediction is limited.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Beata Latos, blatos@igf.edu.pl

This article is included in the YMC: Years of the Maritime Continent special collection.

Save