How interactions between tropical depressions and western disturbances affect heavy precipitation in South Asia

View More View Less
  • 1 National Centre for Atmospheric Science, University of Reading, United Kingdom; and Department of Meteorology, University of Reading, United Kingdom.
  • 2 National Centre for Atmospheric Science, University of Reading, United Kingdom; and Department of Meteorology, University of Reading, United Kingdom.
  • 3 National Centre for Atmospheric Science, Department of Meteorology, University of Reading, United Kingdom.
© Get Permissions
Restricted access

Abstract

Interactions over South Asia between tropical depressions (TDs) and extratropical storms known as western disturbances (WDs) are known to cause extreme precipitation events, including those responsible for the 2013 floods over northern India. In this study, existing databases of WD and TD tracks are used to identify potential WD–TD interactions from 1979–2015; these are filtered according to proximity and intensity, leaving 59 cases which form the basis of this paper. Synoptic charts, vorticity budgets, and moisture trajectory analyses are employed to identify and elucidate common interaction types among these cases. Two broad families of interaction emerge. Firstly, a dynamical coupling of the WD and TD, whereby either the upper- and lower-level vortices superpose (a vortex merger), or the TD is intensified as it passes into the entrance region of a jet streak associated with the WD (a jet-streak excitation). Secondly, a moisture exchange between the WD and TD, whereby either anomalous moisture is advected from the TD to the WD, resulting in anomalous precipitation near the WD (a TD-to-WD moisture exchange), or anomalous moisture is advected from the WD to the TD (a WD-to-TD moisture exchange). Interactions are most common in the post-monsoon period as the subtropical jet, which brings WDs to the subcontinent, returns south; there is a smaller peak in May and June, driven by monsoon onset vortices. Precipitation is heaviest in dynamically-coupled interactions, particularly jet-streak excitations. Criteria for automated identification of interaction types are proposed, and schematics for each type are presented to highlight key mechanisms.

Corresponding author: Kieran M. R. Hunt, email: k.m.r.hunt@reading.ac.uk

Abstract

Interactions over South Asia between tropical depressions (TDs) and extratropical storms known as western disturbances (WDs) are known to cause extreme precipitation events, including those responsible for the 2013 floods over northern India. In this study, existing databases of WD and TD tracks are used to identify potential WD–TD interactions from 1979–2015; these are filtered according to proximity and intensity, leaving 59 cases which form the basis of this paper. Synoptic charts, vorticity budgets, and moisture trajectory analyses are employed to identify and elucidate common interaction types among these cases. Two broad families of interaction emerge. Firstly, a dynamical coupling of the WD and TD, whereby either the upper- and lower-level vortices superpose (a vortex merger), or the TD is intensified as it passes into the entrance region of a jet streak associated with the WD (a jet-streak excitation). Secondly, a moisture exchange between the WD and TD, whereby either anomalous moisture is advected from the TD to the WD, resulting in anomalous precipitation near the WD (a TD-to-WD moisture exchange), or anomalous moisture is advected from the WD to the TD (a WD-to-TD moisture exchange). Interactions are most common in the post-monsoon period as the subtropical jet, which brings WDs to the subcontinent, returns south; there is a smaller peak in May and June, driven by monsoon onset vortices. Precipitation is heaviest in dynamically-coupled interactions, particularly jet-streak excitations. Criteria for automated identification of interaction types are proposed, and schematics for each type are presented to highlight key mechanisms.

Corresponding author: Kieran M. R. Hunt, email: k.m.r.hunt@reading.ac.uk
Save