• Adams, J., and P. Swarztrauber, 1997: Spherepack 2.0: A model development facility. NCAR Tech. Note TN-436+STR, 62 pp., https://doi.org/10.5065/D6Z899CF.

    • Crossref
    • Export Citation
  • Ahern, K., and L. Cowan, 2018: Minimizing common errors when projecting geospatial data onto a vortex-centered space. Geophys. Res. Lett., 45, 12 03212 039, https://doi.org/10.1029/2018GL079953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avila, L. A., S. R. Stewart, R. Berg, and A. H. Hagen, 2020: Tropical cyclone report: Hurricane Dorian (24 August–7 September 2019). NHC Tech. Rep. AL052019, 74 pp., https://www.nhc.noaa.gov/data/tcr/AL052019_Dorian.pdf.

  • Black, P. G., and R. A. Anthes, 1971: On the asymmetric structure of the tropical cyclone outflow layer. J. Atmos. Sci., 28, 13481366, https://doi.org/10.1175/1520-0469(1971)028<1348:OTASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, N. A., and M. A. Shapiro, 1990: Polar lows over the Gulf of Alaska in conditions of reverse shear. Mon. Wea. Rev., 119, 551572, https://doi.org/10.1175/1520-0493(1991)119<0551:PLOTGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747, https://doi.org/10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delaunay, B., 1934: Sur la sphère vide. Bull. Acad. Sci. URSS, Cl. Sci. Math. Nat., 6, 793800.

  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, https://doi.org/10.1175/MWR-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental wind shear. Mon. Wea. Rev., 144, 21552175, https://doi.org/10.1175/MWR-D-15-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2019: A climatological analysis of tropical cyclone rapid intensification in environments of upper-tropospheric troughs. Mon. Wea. Rev., 147, 36933719, https://doi.org/10.1175/MWR-D-19-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., F. D. Marks, and F. Roux, 1994: Comparison of three airborne Doppler sampling techniques with airborne in situ wind observations in Hurricane Gustav (1990). J. Atmos. Oceanic Technol., 12, 171181, https://doi.org/10.1175/1520-0426(1995)012<0171:COTADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654, https://doi.org/10.1175/2009JAS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, P. D. Reasor, and A. C. Didlake, 2016: The rapid intensification of Hurricane Karl (2010): New remote sensing observations of convective bursts from the Global Hawk platform. J. Atmos. Sci., 73, 36173639, https://doi.org/10.1175/JAS-D-16-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. F. Rogers, and R. E. Hart, 2017a: Analyzing simulated convective bursts in two Atlantic hurricanes. Part I: Burst formation and development. Mon. Wea. Rev., 145, 30733094, https://doi.org/10.1175/MWR-D-16-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. E. Hart, and R. F. Rogers, 2017b: Analyzing simulated convective bursts in two Atlantic hurricanes. Part II: Intensity change due to bursts. Mon. Wea. Rev., 145, 30953117, https://doi.org/10.1175/MWR-D-16-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. Part I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaiser, J. F., and R. W. Schafer, 1980: On the use of the I0-sinh window for spectrum analysis. IEEE Trans. Acoust. Speech Signal Process., 28, 105107, https://doi.org/10.1109/TASSP.1980.1163349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, https://doi.org/10.1175/JCLI-D-13-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and K. D. Musgrave, 2018: An operational rapid intensification prediction aid for the western North Pacific. Wea. Forecasting, 33, 799811, https://doi.org/10.1175/WAF-D-18-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and B. R. Strahl, 2020: A tropical cyclone rapid intensification prediction aid for the Joint Typhoon Warning Center’s areas of responsibility. Wea. Forecasting, 35, 11731185, https://doi.org/10.1175/WAF-D-19-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 22602270, https://doi.org/10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., S. Pattnaik, L. Stefanova, T. S. V. Vijaya Kumar, B. P. Mackey, A. J. O’Shay, and R. J. Pasch, 2005: The hurricane intensity issue. Mon. Wea. Rev., 133, 18861912, https://doi.org/10.1175/MWR2954.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, W., C. Velden, and D. Stettner, 2020: Strategies for assimilating high-density atmospheric motion vectors into a regional tropical cyclone forecast model (HWRF). Atmosphere, 11, 673, https://doi.org/10.3390/atmos11060673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau, L. F. Bosart, R. W. Moore, and O. Martius, 2013: A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Wea. Rev., 141, 19631989, https://doi.org/10.1175/MWR-D-12-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuttall, A. H., 1981: Some windows with very good sidelobe behavior. IEEE Trans. Acoust. Speech Signal Process., 29, 8491, https://doi.org/10.1109/TASSP.1981.1163506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. Nolan, 2016: Tropical cyclone–relative environmental helicity and the pathways to intensification in shear. J. Atmos. Sci., 73, 869890, https://doi.org/10.1175/JAS-D-15-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2015: Evaluation of a heuristic model for tropical cyclone resilience. J. Atmos. Sci., 72, 17651782, https://doi.org/10.1175/JAS-D-14-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. F. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and F. Laliberté, 2015: Secondary circulation of tropical cyclones in vertical wind shear: Lagrangian diagnostic and pathways of environmental interaction. J. Atmos. Sci., 72, 35173536, https://doi.org/10.1175/JAS-D-14-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. D. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclone. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., C. S. Velden, J. Kaplan, J. P. Kossin, and A. J. Wimmers, 2015: Improvements in the probabilistic prediction of tropical cyclone rapid intensification with passive microwave observations. Wea. Forecasting, 30, 10161038, https://doi.org/10.1175/WAF-D-14-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., and R. E. Hart, 2015: An investigation of center-finding techniques for tropical cyclones in mesoscale models. J. Appl. Meteor. Climatol., 54, 825846, https://doi.org/10.1175/JAMC-D-14-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., and D. Hodyss, 2016: A deeper analysis of center-finding techniques for tropical cyclones in mesoscale models. Part I: Low-wavenumber analysis. J. Appl. Meteor. Climatol., 55, 531559, https://doi.org/10.1175/JAMC-D-15-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. D. Doyle, Y. Jin, D. Hodyss, and J. H. Cossuth, 2018a: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part II: Vortex tilt. Mon. Wea. Rev., 146, 38013825, https://doi.org/10.1175/MWR-D-18-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. H. Cossuth, D. Hodyss, and J. D. Doyle, 2018b: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part I: Overview and observations. Mon. Wea. Rev., 146, 37733800, https://doi.org/10.1175/MWR-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. D. Doyle, D. Hodyss, J. H. Cossuth, Y. Jin, K. C. Viner, and J. M. Schmidt, 2019: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part III: Outflow–environment interaction. Mon. Wea. Rev., 147, 29192940, https://doi.org/10.1175/MWR-D-18-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., D. Hodyss, and G. Rainwater, 2020: The tropical cyclone as a divergent source in a background flow. J. Atmos. Sci., 77, 41894210, https://doi.org/10.1175/JAS-D-20-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and A. J. Schrader, 2000: The Automated Tropical Cyclone Forecasting System (version 3.2). Bull. Amer. Soc., 81, 12311240, https://doi.org/10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., J. S. Goerss, J. A. Knaff, B. R. Strahl, E. M. Fukada, and E. A. Serra, 2018: Tropical cyclone gale wind radii estimates, forecasts, and error forecasts for the western North Pacific. Wea. Forecasting, 33, 10811092, https://doi.org/10.1175/WAF-D-17-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 2015: Response of a simulated hurricane to misalignment forcing compared to the predictions of a simple theory. J. Atmos. Sci., 72, 12351260, https://doi.org/10.1175/JAS-D-14-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sears, J., and C. Velden, 2012: Validation of satellite-derived atmospheric motion vectors and analyses around tropical disturbances. J. Appl. Meteor. Climatol., 51, 18231834, https://doi.org/10.1175/JAMC-D-12-024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shea, D. J., and W. M. Gray, 1973: The hurricane’s inner core region. Part I: Symmetric and asymmetric structure. J. Atmos. Sci., 30, 15441564, https://doi.org/10.1175/1520-0469(1973)030<1544:THICRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J. J., S. Chang, and S. Raman, 1997: Interaction between Hurricane Florence (1988) and an upper-tropospheric westerly trough. J. Atmos. Sci., 54, 12311247, https://doi.org/10.1175/1520-0469(1997)054<1231:IBHFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. W., 2003: Digital Signal Processing: A Practical Guide for Engineers and Scientists. Elsevier, 650 pp.

  • Steranka, J., E. B. Rodgers, and R. C. Gentry, 1986: The relationship between satellite measured convective bursts and tropical cyclone intensification. Mon. Wea. Rev., 114, 15391546, https://doi.org/10.1175/1520-0493(1986)114<1539:TRBSMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stettner, D., C. Velden, R. Rabin, S. Wanzong, J. Daniels, and W. Bresky, 2019: Development of enhanced vortex-scale atmospheric motion vectors for hurricane applications. Remote Sens., 11, 1981, https://doi.org/10.3390/rs11171981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corborsiero, and J. Molinari, 2014: The convective evolution and rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 142, 43644380, https://doi.org/10.1175/MWR-D-14-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2017: Tropical cyclone report: Hurricane Matthew (28 September–9 October 2016). NHC Tech. Rep. AL142016, 96 pp., https://www.nhc.noaa.gov/data/tcr/AL142016_Matthew.pdf.

  • Terpstra, A., C. Michel, and T. Spengler, 2016: Forward and reverse shear environments during polar low genesis over the northeast Atlantic. Mon. Wea. Rev., 144, 13411354, https://doi.org/10.1175/MWR-D-15-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and J. Sears, 2014: Computing deep-tropospheric vertical wind shear analyses for tropical cyclone applications: Does the methodology matter? Wea. Forecasting, 29, 11691180, https://doi.org/10.1175/WAF-D-13-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., W. Lewis, W. Bresky, D. Stettner, J. Daniels, and S. Wanzong, 2017: Assimilation of high-resolution satellite-derived atmospheric motion vectors: Impact on HWRF forecasts of tropical cyclone track and intensity. Mon. Wea. Rev., 145, 11071125, https://doi.org/10.1175/MWR-D-16-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., R. F. Rogers, and P. D. Reasor, 2018: The relationship between spatial variations in the structure of convective bursts and tropical cyclone intensification as determined by airborne Doppler radar. Mon. Wea. Rev., 146, 761780, https://doi.org/10.1175/MWR-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawislak, J., H. Jiang, G. R. Alvey III, E. J. Zipser, R. F. Rogers, J. A. Zhang, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Wea. Rev., 144, 33333354, https://doi.org/10.1175/MWR-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 60 60 60
Full Text Views 22 22 22
PDF Downloads 28 28 28

Observations of Atypical Rapid Intensification Characteristics in Hurricane Dorian (2019)

View More View Less
  • 1 a Marine Meteorology Division, Naval Research Laboratory, Monterey, California
  • | 2 b Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin
  • | 3 c NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida
  • | 4 d Remote Sensing Division, Naval Research Laboratory, Washington, D.C.
© Get Permissions
Restricted access

Abstract

Multiple observation and analysis datasets are used to demonstrate two key features of the atypical rapid intensification (ARI) process that occurred in Atlantic Hurricane Dorian (2019): 1) precession and nutations of the vortex tilt and 2) blocking of the impinging upper-level environmental flow by the outflow. As Dorian came under the influence of an upper-level anticyclone, traditional methods of estimating vertical wind shear all indicated relatively low values were acting on the storm; however, high-spatiotemporal-resolution atmospheric motion vectors (AMVs) indicated that the environmental flow at upper levels was actually impinging on the vortex core, resulting in a vertical tilt. We employ a novel ensemble of centers of individual swaths of dual-Doppler radar data from WP-3D aircraft to characterize the precession and wobble of the vortex tilt. This tilting and wobbling preceded a sequence of outflow surges that acted to repel the impinging environmental flow, thereby reducing the shear and permitting ARI. We then apply prior methodology on satellite imagery for distinguishing ARI features. Finally, we use the AMV dataset to experiment with different shear calculations and show that the upper-level cross-vortex flow approaches zero. We discuss the implication of these results with regard to prior works on ARI and intensification in shear.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David R. Ryglicki, david.ryglicki@nrlmry.navy.mil

Abstract

Multiple observation and analysis datasets are used to demonstrate two key features of the atypical rapid intensification (ARI) process that occurred in Atlantic Hurricane Dorian (2019): 1) precession and nutations of the vortex tilt and 2) blocking of the impinging upper-level environmental flow by the outflow. As Dorian came under the influence of an upper-level anticyclone, traditional methods of estimating vertical wind shear all indicated relatively low values were acting on the storm; however, high-spatiotemporal-resolution atmospheric motion vectors (AMVs) indicated that the environmental flow at upper levels was actually impinging on the vortex core, resulting in a vertical tilt. We employ a novel ensemble of centers of individual swaths of dual-Doppler radar data from WP-3D aircraft to characterize the precession and wobble of the vortex tilt. This tilting and wobbling preceded a sequence of outflow surges that acted to repel the impinging environmental flow, thereby reducing the shear and permitting ARI. We then apply prior methodology on satellite imagery for distinguishing ARI features. Finally, we use the AMV dataset to experiment with different shear calculations and show that the upper-level cross-vortex flow approaches zero. We discuss the implication of these results with regard to prior works on ARI and intensification in shear.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David R. Ryglicki, david.ryglicki@nrlmry.navy.mil
Save