Current Measurements along the Shelf Break in the Gulf of Alaska

R. K. Reed NOAA/Pacific Marine Environmental Laboratory, Seattle, WA 98115

Search for other papers by R. K. Reed in
Current site
Google Scholar
PubMed
Close
and
J. D. Schumacher NOAA/Pacific Marine Environmental Laboratory, Seattle, WA 98115

Search for other papers by J. D. Schumacher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Data from current moorings at four sites near the shelf break in the Gulf of Alaska are used to present information on the flow, to examine the effects of local winds, and especially to investigate momentum transfer between the offshore and inshore circulation. Net flow at the shelf break in the central and western appears to be similar through the year, but it intensifies appreciably in winter in the northeast Gulf. Only records in the northeast Gulf suggest significant effects on flow by local winds. The eddy fluxes of momentum at the shelf break were extremely small. Although the offshore Alaskan Stream was previously found to transfer momentum toward shore, this flux apparently does not reach the shelf break and influence shelf waters. It appears rather that the gradients of heat and salt observed near the shelf edge result from offshore effects of the coastal flow.

Abstract

Data from current moorings at four sites near the shelf break in the Gulf of Alaska are used to present information on the flow, to examine the effects of local winds, and especially to investigate momentum transfer between the offshore and inshore circulation. Net flow at the shelf break in the central and western appears to be similar through the year, but it intensifies appreciably in winter in the northeast Gulf. Only records in the northeast Gulf suggest significant effects on flow by local winds. The eddy fluxes of momentum at the shelf break were extremely small. Although the offshore Alaskan Stream was previously found to transfer momentum toward shore, this flux apparently does not reach the shelf break and influence shelf waters. It appears rather that the gradients of heat and salt observed near the shelf edge result from offshore effects of the coastal flow.

Save