All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 194 42 0
PDF Downloads 8 6 0

A Diagnostic Coastal Circulation Model with Application to Conception Bay, Newfoundland

View More View Less
  • 1 Department of Physics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Restricted access

Abstract

A diagnostic circulation model is developed for application to coastal regions. The three-dimensional velocity field can be calculated from a specified density field and wind-stress distribution provided transport is given on boundaries where f/H contours enter the model domain (here f is the Coriolis parameter and H is the ocean depth). The model is an extension of that of Mellor. It includes the effect of vertical mixing and bottom friction and avoids explicit calculation of the JEBAR (joint effect of baroclinicity and relief) term, which can be noisy when a realistic density field is combined with realistic topography. The model can also be used in regions of closed f/H contours. An application of the model to Conception Bay, Newfoundland, illustrates the case of calculation and yields comparisons with the more classical technique of dynamic height analysis.

Abstract

A diagnostic circulation model is developed for application to coastal regions. The three-dimensional velocity field can be calculated from a specified density field and wind-stress distribution provided transport is given on boundaries where f/H contours enter the model domain (here f is the Coriolis parameter and H is the ocean depth). The model is an extension of that of Mellor. It includes the effect of vertical mixing and bottom friction and avoids explicit calculation of the JEBAR (joint effect of baroclinicity and relief) term, which can be noisy when a realistic density field is combined with realistic topography. The model can also be used in regions of closed f/H contours. An application of the model to Conception Bay, Newfoundland, illustrates the case of calculation and yields comparisons with the more classical technique of dynamic height analysis.

Save