Deep-Water Upwelling in the Frictional Western Boundary Layer

Rui Xin Huang Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Rui Xin Huang in
Current site
Google Scholar
PubMed
Close
and
Jiayan Yang Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Jiayan Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The structure of a Stommel type of frictional western boundary layer in a thermally driven two-layer model is examined. Instead of specifying the interfacial upwelling a priori, it is calculated as part of the solution subject to the dynamic and thermodynamic constraints. It is shown that upwelling prevails in the western boundary. Scaling analysis indicates that upwelling within the western boundary layer is two orders of magnitude stronger than that in the ocean interior. Furthermore, the total amount of upwelling within the western boundary layer constitutes a substantial part of the basin-integrated upwelling. Thus, our results suggest that it is important to study the dynamic role of western boundary upwelling in ocean circulation models.

Abstract

The structure of a Stommel type of frictional western boundary layer in a thermally driven two-layer model is examined. Instead of specifying the interfacial upwelling a priori, it is calculated as part of the solution subject to the dynamic and thermodynamic constraints. It is shown that upwelling prevails in the western boundary. Scaling analysis indicates that upwelling within the western boundary layer is two orders of magnitude stronger than that in the ocean interior. Furthermore, the total amount of upwelling within the western boundary layer constitutes a substantial part of the basin-integrated upwelling. Thus, our results suggest that it is important to study the dynamic role of western boundary upwelling in ocean circulation models.

Save