• Arhan, M., H. Mercier, Y. Gouriou, and B. Bourles, 1998: Two zonal hydrographic sections across the Atlantic Ocean at 7°30′N and 4°30′S. Deep-Sea Res., in press.

  • Caldwell, D. R., and J. N. Moum, 1995: Turbulence and mixing in the ocean. Rev. Geophys.,33 (Suppl.), 1385–1394.

  • Crawford, W. R., 1986: A comparison of length scales and decay times of turbulence in stably stratified flows. J. Phys. Oceanogr.,16, 1847–1854.

  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res.,87, 9601–9613.

  • Gargett, A. E., 1993: Parameterizing the effect of small-scale mixing in large-scale numerical models. NATO ASI Series,I (11), 185–204.

  • ——, 1994: Observing turbulence with a modified acoustic Doppler current profiler. J. Atmos. Oceanic Technol.,11, 1592–1610.

  • ——, and J. N. Moum, 1995: Mixing efficiencies in turbulent tidal fronts: Results from direct and indirect measurements of density flux. J. Phys. Oceanogr.,25, 2583–2608.

  • Hogg, N., P. Biscaye, W. Gardner, and W. J. Schmitz, 1982: On the transport and modification of Antarctic Bottom Water in the Vema Channel. J. Mar. Res.,40 (Suppl), 231–263.

  • Holt, S. E., J. R. Kossef, and J. H. Ferziger, 1992: A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech.,237, 499–539.

  • Itsweire, E. C., 1984: Measurements of vertical overturns in a stably stratified turbulent flow. Phys. Fluids,27, 764–766.

  • ——, J. R. Kossef, D. A. Briggs, and J. H. Ferziger, 1993: Turbulence in stratified shear flows: Implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr.,23, 1508–1522.

  • Kundu, P. K., 1990: Fluid Mechanics. Academic Press, 638 pp.

  • Mantyla, A. W., and J. L. Reid, 1983: Abyssal characteristics of the world ocean waters. Deep-Sea Res.,30, 805–833.

  • McDougall, T., 1991: Parameterizing mixing in inverse models. Proc. Hawaiian Winter Workshop, SOEST Special Publication, 355–386.

  • Mercier, H., and P. Morin, 1997: Hydrography of the Romanche and Chain Fracture Zones. J. Geophys. Res.,102, 10 373–10 389.

  • ——, and K. G. Speer, 1998: Transport of bottom water in the Romanche Fracture Zone and the Chain Fracture Zone. J. Phys. Oceanogr.,28, 779–790.

  • ——, A. Billant, P. Branellec, P. Morin, M.-J. Messias, L. Memery, C. Thomas, and J. Honnorez, 1992: Campagne Romanche 1: Données CTDO2, chimie et bathymétrie. Rapport interne LPO 92-02, 146 pp. [Available from Laboratoire de Physique des Oceáns, IFREMER centre de Brest, BP 70, 29280 Plouzané, France.].

  • ——, K. G. Speer, and J. Honnorez, 1994: Flow pathways of bottom water through the Romanche and Chain Fracture Zones. Deep-Sea Res.,41, 1457–1477.

  • ——, A. Billant, P. Branellec, C. Andrié, M.-J. Messias, Y. Gouriou, and C. Lagadec, 1995: Campagne Romanche 2: Données de la sonde CTDO2, mesures de salinité, d’oxygène dissous, et des chlorofluorométhanes, courantométrie acoustique Doppler. Rapport interne LPO 95-02, 382 pp. [Available from Laboratoire de Physique des Oceáns, IFREMER centre de Brest, BP 70, 29280 Plouzané, France.].

  • ——, ——, ——, J. P. Goulliou, C. Hemon, and C. Lagadec, 1997:Campagne Romanche 3: mouillages de courantométrie, données CTD, courantométrie acoustique Doppler sur profil, courantométrie acoustique Doppler de coque. Rapport interne LPO 97-01, 374 pp. [Available from Laboratoire de Physique des Oceáns, IFREMER centre de Brest, BP 70, 29280 Plouzané, France.].

  • Moum, J. N., 1990: The quest for Kρ—Preliminary results from direct measurements of turbulent fluxes in the ocean. J. Phys. Oceanogr.,20, 1980–1984.

  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr.,12, 256–271.

  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr.,10, 83–89.

  • Ozmidov, R. V., 1965: On the turbulent exchange in a stably stratified ocean. Atmos. Ocean. Phys.,8, 853–860.

  • Polzin, K. L, K. G. Speer, J. M. Toole, and R. W. Schmitt, 1996: Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature,380, 54–57.

  • ——, J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science,276, 93–96.

  • Press, H. W., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1995: Numerical Recipes in C. Cambridge University Press, 994 pp.

  • Schmitt, R. W., J. M. Toole, R. L. Koehler, E. C. Mellinger, and K. W. Doherty, 1988: The development of a fine- and microstructure profiler. J. Atmos. Oceanic Technol.,5, 484–500.

  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London,A286, 125–181.

  • Toole, J. M., K. L. Polzin, and R. W. Schmitt, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science,264, 1120–1123.

  • Warren, B. A., and K. Speer, 1991: Deep circulation in the eastern South Atlantic. Deep-Sea Res.,38 (Suppl), 281–322.

  • Wesson, J. C., and M. C. Gregg, 1994: Mixing at Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res.,99, 9847–9878.

  • Whitehead, J. A., and L. V. Worthington, 1982: The flux and mixing rates of Antarctic Bottom Water within the North Atlantic. J. Geophys. Res.,87, 7903–7924.

  • Wijesekera, H. W., T. M. Dillon, and L. Padman, 1993: Some statistical and dynamical properties of turbulence in the oceanic pycnocline. J. Geophys. Res.,98, 22 665–22 679.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 171 171 10
PDF Downloads 51 51 9

Mixing in the Romanche Fracture Zone

View More View Less
  • 1 Laboratoire de Physique des Océans, Institut Français de Recherche pour l’Exploitation de la Mer, Brest, France
  • | 2 Institute of Ocean Sciences, Sidney, British Columbia, Canada
  • | 3 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions
Restricted access

Abstract

The Romanche Fracture Zone is a major gap in the Mid-Atlantic Ridge at the equator, which is deep enough to allow significant eastward flows of Antarctic Bottom Water from the Brazil Basin to the Sierra Leone and Guinea Abyssal Plains. While flowing through the Romanche Fracture Zone, bottom-water properties are strongly modified due to intense vertical mixing. The diapycnal mixing coefficient in the bottom water of the Romanche Fracture Zone is estimated by using the finestructure of CTD profiles, the microstructure of high-resolution profiler data, and by constructing a heat budget from current meter data.

The finestructure of density profiles is described using the Thorpe scales LT. It is shown from microstructure data taken in the bottom water that the Ozmidov scale LO is related to LT by the linear relationship LO = 0.95LT, similar to other studies, which allows an estimate of the diapycnal mixing coefficient using the Osborn relation. The Thorpe scale and the diapycnal mixing coefficient estimates show enhanced mixing downstream (eastward) of the main sill of the Romanche Fracture Zone. In this region, a mean diapycnal mixing coefficient of about 1000 × 10−4 m2 s−1 is found for the bottom water.

Estimates of cross-isothermal mixing coefficient derived from the heat budgets constructed downstream of the current meter arrays deployed in the Romanche Fracture Zone and the nearby Chain Fracture Zone are in agreement with the finestructure estimates of the diapycnal mixing coefficient within the Romanche Fracture Zone. Although the two fracture zones occupy only 0.4% of the area covered by the Sierra Leone and Guinea Abyssal Plains, the diffusive heat fluxes across the 1.4°C isotherm in the Romanche and Chain Fracture Zones are half that found over the abyssal plains across the 1.8°C isotherm, emphasizing the role of these passages for bottom-water property modifications.

Corresponding author address: Bruno Ferron, IFREMER, Laboratoire de Physique des Océans, B.P. 70, 29280 Plouzané, France.

Email: bferron@ifremer.fr

Abstract

The Romanche Fracture Zone is a major gap in the Mid-Atlantic Ridge at the equator, which is deep enough to allow significant eastward flows of Antarctic Bottom Water from the Brazil Basin to the Sierra Leone and Guinea Abyssal Plains. While flowing through the Romanche Fracture Zone, bottom-water properties are strongly modified due to intense vertical mixing. The diapycnal mixing coefficient in the bottom water of the Romanche Fracture Zone is estimated by using the finestructure of CTD profiles, the microstructure of high-resolution profiler data, and by constructing a heat budget from current meter data.

The finestructure of density profiles is described using the Thorpe scales LT. It is shown from microstructure data taken in the bottom water that the Ozmidov scale LO is related to LT by the linear relationship LO = 0.95LT, similar to other studies, which allows an estimate of the diapycnal mixing coefficient using the Osborn relation. The Thorpe scale and the diapycnal mixing coefficient estimates show enhanced mixing downstream (eastward) of the main sill of the Romanche Fracture Zone. In this region, a mean diapycnal mixing coefficient of about 1000 × 10−4 m2 s−1 is found for the bottom water.

Estimates of cross-isothermal mixing coefficient derived from the heat budgets constructed downstream of the current meter arrays deployed in the Romanche Fracture Zone and the nearby Chain Fracture Zone are in agreement with the finestructure estimates of the diapycnal mixing coefficient within the Romanche Fracture Zone. Although the two fracture zones occupy only 0.4% of the area covered by the Sierra Leone and Guinea Abyssal Plains, the diffusive heat fluxes across the 1.4°C isotherm in the Romanche and Chain Fracture Zones are half that found over the abyssal plains across the 1.8°C isotherm, emphasizing the role of these passages for bottom-water property modifications.

Corresponding author address: Bruno Ferron, IFREMER, Laboratoire de Physique des Océans, B.P. 70, 29280 Plouzané, France.

Email: bferron@ifremer.fr

Save