• Aargaard, K., J. H. Swift, and E. C. Carmack, 1985: Thermohaline circulation in the Arctic Mediterranean Seas. J. Geophys. Res.,90, 4833–4846.

  • Beckmann, A., and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr.,27, 581–591.

  • Bryan, F., 1986: High latitude salinity effects and inter hemispheric thermohaline circulations. Nature,323, 301–304.

  • Dansgaard, W., S. J. Johnsen, H. B. Causen, D. Dahl-Jensen, N. S. Gundestrup, C. U. Hammer, C. S. Huidber, J. P. Steffensen, A. E. Sveinbjornsdottir, J. Jouzel, and G. Bond, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature,364, 218–220.

  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res.,99 (C6), 12 319–12 341.

  • ——, J. Meincke, S. A. Malmberg, and A. J. Lee, 1988: The “Great Salinity Anomaly” in the northern Atlantic 1968–1982. Progress in Oceanography, Vol. 20, Pergamon, 103–151.

  • Döscher, R., and R. Redler, 1997: The relative influence of North Atlantic overflow and subpolar deep convection on the thermohaline circulation in an OGCM. J. Phys. Oceanogr.,27, 1894–1902.

  • ——, C. W. Böning, and P. Herrmann, 1994: Response of circulation and heat transport in the North Atlantic to changes in the thermohaline forcing in northern latitudes: A model study. J. Phys. Oceanogr.,24, 2306–2320.

  • Fairbanks, R. G., 1989: A 17 000 year glacio–eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature,342, 637–642.

  • Gerdes, R., 1993a: A primitive equation ocean general circulation model using a general vertical coordinate transformation. I: Description and testing of the model. J. Geophys. Res.,98, 14 683–14 701.

  • ——, 1993b: A primitive equation ocean general circulation model using a general vertical coordinate transformation. II: Application to the overflow problem. J. Geophys. Res.,98, 14 703–14 726.

  • ——, and C. Köberle, 1995: On the influence of DSOW in a numerical model of the North Atlantic general circulation. J. Phys. Oceanogr.,25, 2624–2642.

  • Gnanadesikan, A., R. C. Pacanowski, and M. Winton, 1998: Representing the bottom boundary layer in the GFDL ocean model:Model framework, dynamical impacts, and parameter sensitivity. J. Phys. Oceanogr., in press.

  • Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma coordinate models. J. Phys. Oceanogr.,21, 610–619.

  • Hellerman, S., and M. Rosenstein, 1983: Normal monthly wind stress over the World Ocean with error estimates. J. Phys. Oceanogr.,13, 1093–1104.

  • Imbrie, J., E. A. Boyle, S. C. Clemens, A. Duffy, W. R. Howard, G. Kukla, J. Kutzbach, D. G. Martinson, A. McIntyre, A. C. Mix, B. Molfino, J. J. Morley, L. C. Peterson, N. G. Pisias, W. L. Prell, M. E. Raymo, N. J. Shackelton, and J. R. Toggweiler, 1992: On the structure and origin of major glaciation cycles. 1:Linear response to Milankovitch forcing. Paleoceanogr.,7, 701–738.

  • Keigwin, L. D., G. A. Jones, S. J. Lehmann, and E. A. Boyle, 1991: Deglacial meltwater discharge, North Atlantic deep circulation, and abrupt climate change. J. Geophys. Res.,96, 16 811–16 826.

  • Killworth, P. D., and N. R. Edwards, 1998: A turbulent bottom boundary layer code for the use in numerical ocean models. J. Phys. Oceanogr., in press.

  • Lazier, J. R. N., 1980: Temperature and salinity changes in the deep Labrador Sea, 1962–1986. Deep-Sea Res.,35, 1247–1253.

  • Lohmann, G., and R. Gerdes, 1998: Sea ice effects on the sensitivity of the thermo-haline circulation. J. Climate, in press.

  • ——, ——, and D. Chen, 1996a: Sensitivity of the thermohaline circulation in coupled oceanic GCM-atmospheric EBM experiments. Climate Dyn.,12, 403–416.

  • ——, ——, and ——, 1996b: Stability of the thermohaline circulation in a simple coupled model. Tellus,48, 465–476.

  • Manabe, S., and R. J. Stouffer, 1995: Simulation of abrupt climate change induced by fresh water input to the North Atlantic Ocean. Nature,378, 165–167.

  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulent closure models of planetary boundary layers. J. Atmos. Sci.,31, 1791–1806.

  • Mertz, G., and D. G. Wright, 1992: Interpretations of the JEBAR term. J. Phys. Oceanogr.,22, 301–305.

  • Mikolajewicz, U., and E. Maier-Reimer, 1994: Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model’s conveyor belt. J. Geophys. Res.,99 (C11), 22 633–22 644.

  • Pacanowski, R. K., K. Dixon, and A. Rosati, 1991: The GFDL Modular Ocean Model user’s guide. GFDL Tech. Rep. 2, Princeton University. [Available from Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, NJ 08542.].

  • Prange, M., G. Lohmann, and R. Gerdes, 1997: The sensitivity of the thermohaline circulation for different climates—Investigations with a simple atmosphere–ocean model. Paleoclimates,2, 71–99.

  • Redler, R., and C. W. Böning, 1997: Effect of the overflows on the circulation in the subpolar North Atlantic: A regional study. J. Geophys. Res.,102 (C8), 18 529–18 552.

  • Roberts, M. J., and R. A. Wood, 1997: Topographic sensitivity studies with a Bryan-Cox-Type ocean model. J. Phys. Oceanogr.,27, 823–836.

  • Sarkisyan, A. S., and V. F. Ivanov, 1971: Joint effect of baroclinity and relief as an important factor in the dynamics of sea currents. Izv. Akad. Sci. USSR., Atmos. Oceanic Phys.,7, 173–188.

  • Saunders, P. M., 1990: Cold outflow from Faroe Bank Channel. J. Phys. Oceanogr.,20, 29–43.

  • Schiller, A., U. Mikolajewicz, and R. Voss, 1997: The stability of the thermohaline circulation in a coupled ocean–atmosphere general circulation model. Climate Dyn.,13, 325–347.

  • Schlosser, P., G. Bönisch, M. Rhein, and R. Bayer, 1991: Reduction of deep water formation in the Greenland Sea during the 1980s:Evidence from tracer data. Science,251, 1054–1056.

  • Tzipermann, E., 1997: Inherently unstable climate behaviour due to weak thermohaline circulation. Nature,386, 592–595.

  • Winton, M., R. Hallberg, and A. Gnanadesikan, 1998: Simulation of density-driven frictional downslope flow in z-coordinate ocean models. J. Phys. Oceanogr.,28 in press.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 111 111 6
PDF Downloads 6 6 1

The Influence of a Near-Bottom Transport Parameterization on the Sensitivity of the Thermohaline Circulation

View More View Less
  • 1 Max Planck Institute for Meteorology, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

The effect of a near-bottom transport scheme on the sensitivity of the thermohaline circulation is analyzed in a coupled model. In this model with idealized geometry of the Atlantic, it is shown that in the presence of a northern source of deep water, an accurate representation of the overflow process has a stabilizing effect on the thermohaline circulation for subpolar sea-surface salinity perturbations. The large-scale overturning circulation can be maintained in the presence of a continued deep-water formation north of the sill. Experiments suggest that without a sufficient coupling across a sill in the northern North Atlantic, the response of the ocean’s circulation to subpolar atmospheric variability may be too strong.

Corresponding author address: Dr. Gerrit Lohmann, Max-Planck-Institute for Meteorology, Bundesstrasse 55, 20146 Hamburg, Germany.

Email: gerrit.lohmann@dkrz.de

Abstract

The effect of a near-bottom transport scheme on the sensitivity of the thermohaline circulation is analyzed in a coupled model. In this model with idealized geometry of the Atlantic, it is shown that in the presence of a northern source of deep water, an accurate representation of the overflow process has a stabilizing effect on the thermohaline circulation for subpolar sea-surface salinity perturbations. The large-scale overturning circulation can be maintained in the presence of a continued deep-water formation north of the sill. Experiments suggest that without a sufficient coupling across a sill in the northern North Atlantic, the response of the ocean’s circulation to subpolar atmospheric variability may be too strong.

Corresponding author address: Dr. Gerrit Lohmann, Max-Planck-Institute for Meteorology, Bundesstrasse 55, 20146 Hamburg, Germany.

Email: gerrit.lohmann@dkrz.de

Save