• Bleck, R., 1974: Short-range prediction in isentropic coordinates with filtered and unfiltered numerical models. Mon. Wea. Rev.,102, 813–829.

  • ——, and L. T. Smith, 1990: A wind-driven isopycnic model of the North and equatorial Atlantic Ocean. 1. Model development and supporting experiments. J. Geophys. Res.,95, 3273–3285.

  • Boyer, T., and S. Levitus, 1994: Quality control and processing of historical oceanographic temperature, salinity, and oxygen data. National Oceanic and Atmospheric Administration Tech. Rep. NESDIS 81, U.S. Department of Commerce, 64 pp.

  • Davis, R. E., 1994: Diapycnal mixing in the ocean: Equations for large-scale budgets. J. Phys. Oceanogr.,24, 777–800.

  • de Szoeke, R. A., and A. F. Bennett, 1993: Microstructure fluxes across density surfaces. J. Phys. Oceanogr.,23, 2254–2264.

  • ——, S. R. Springer, and D. M. Oxilia, 2000: Orthobaric density: A thermodynamic variable for ocean circulation studies. J. Phys. Oceanogr.,30, 2830–2852.

  • Eden, C., and J. Willebrand, 1999: Neutral density revisited. Deep-Sea Res. II,46, 33–54.

  • Ekman, V. W., 1934: Review of “Das Bodenwasser und die Gliederung der Atlantischen Tiefsee” by G. Wüst. J. Cons. perm. int. Explor. Mer,9, 102–104.

  • Eliassen, A., and E. Kleinschmidt, 1957: Dynamic meteorology. Handbuch der Physik, S. Flügge, Ed., Vol. 48, Springer-Verlag, 1–154.

  • Ertel, H., 1942: Ein neuer hydrodynamischer Wirbelsatz. Meteor. Z.,59, 277–281.

  • Feistel, R., 1993: Equilibrium thermodynamics of seawater revisited. Progress in Oceanography, Vol. 31, Pergamon, 101–179.

  • Fofonoff, N. P., 1985: Physical properties of seawater: A new salinity scale and equation of state for seawater. J. Geophys. Res.,90 (C2), 3332–3342.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Haltiner, G. J., and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. 2d ed. Wiley, 477 pp.

  • Higdon, R. L., and A. F. Bennett, 1996: Stability analysis of operator splitting for large-scale ocean modeling. J. Comput. Phys.,123, 311–329.

  • ——, and R. A. de Szoeke, 1997: Barotropic–baroclinic time splitting for ocean circulation modeling. J. Comput. Phys.,135, 30–53.

  • Hsu, Y. G., and A. Arakawa, 1990: Numerical modeling of the atmosphere with an isentropic vertical coordinate. Mon. Wea. Rev.,118, 1933–1959.

  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol.,12, 381–389.

  • ——, and ——, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr.,27, 237–263.

  • Keffer, T., 1985: The ventilation of the world’s oceans: Maps of the potential vorticity field. J. Phys. Oceanogr.,15, 509–523.

  • Lynn, R. J., and J. L. Reid, 1968: Characteristics and circulation of deep and abyssal waters. Deep-Sea Res.,15, 577–598.

  • McDougall, T. J., 1987a: Neutral surfaces. J. Phys. Oceanogr.,17, 1950–1964.

  • ——, 1987b: Thermobaricity, cabbeling and water mass conversion. J. Geophys. Res.,92, 5448–5464.

  • ——, 1988: Neutral surface potential vorticity. Progress in Oceanography, Vol. 20, Pergamon, 185–221.

  • ——, 1989: Streamfunctions for the lateral velocity vector in a compressible ocean. J. Mar. Res.,47, 267–284.

  • ——, 1995: The influence of ocean mixing on the absolute velocity vector. J. Phys. Oceanogr.,25, 705–725.

  • ——, and D. R. Jackett, 1988: On the helical nature of neutral surfaces. Progress in Oceanography, Vol. 20, Pergamon, 153–183.

  • ——, and C. J. R. Garrett, 1992: Scalar conservation equations in a turbulent ocean. Deep-Sea Res.,39, 1953–1966.

  • Montgomery, R. B., 1937: A suggested method for representing gradient flow in isentropic surfaces. Bull. Amer. Meteor. Soc.,18, 210–212.

  • ——, 1938: Circulation in upper layers of southern North Atlantic deduced with use of isentropic analysis. Papers Phys. Oceanogr. Meteor.,6, No. 2, 55 pp.

  • Oberhuber, J. M., 1993: Simulation of the Atlantic circulation with a coupled sea ice–mixed layer–isopycnal general circulation model. Part I: Model description. J. Phys. Oceanogr.,23, 808–829.

  • Palmén, E., and C. W. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation. Academic Press, 603 pp.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer-Verlag, 710 pp.

  • Reid, J. L., 1981: On the mid-depth circulation of the world ocean. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., The MIT Press, 70–111.

  • ——, and R. J. Lynn, 1971: On the influence of the Norwegian–Greenland and Weddell Seas upon the bottom waters of the Indian and Pacific Oceans. Deep-Sea Res.,18, 1063–1088.

  • Robinson, A. R., 1965: A three-dimensional model of inertial currents in a variable-density ocean. J. Fluid Mech.,21, 211–223.

  • Spiegel, E. A., and G. Veronis, 1960: On the Boussinesq approximation for a compressible fluid. Astrophys. J.,131, 442–447.

  • Sun, S., R. Bleck, C. G. H. Rooth, J. Dukowicz, E. P. Chassignet, and P. Killworth, 1999: Inclusion of thermobaricity in isopycnic-coordinate ocean models. J. Phys. Oceanogr.,29, 2719–2729.

  • Sverdrup, H. U., M. W. Johnson, and R. H. Fleming, 1942: The Oceans. Prentice-Hall, 1087 pp.

  • Talley, L. D., 1988: Potential vorticity distribution in the North Pacific. J. Phys. Oceanogr.,18, 89–106.

  • Tsuchiya, M., L. D. Talley, and M. S. McCartney, 1992: An eastern Atlantic section from Iceland southward across the equator. Deep-Sea Res.,39, 1885–1917.

  • ——, ——, and ——, 1994: Water mass distributions in the western Atlantic: A section from South Georgia Island (54°S) northward across the equator. J. Mar. Res.,52, 55–81.

  • You, Y., and T. J. McDougall, 1990: Neutral surfaces and potential vorticity in the world’s oceans. J. Geophys. Res.,95, 13 235–13 261.

  • Wüst, G., 1933: The stratosphere of the Atlantic ocean. Scientific Results of the German Atlantic Expedition of the R. V. Meteor 1925–1927, Vol. 6, Amerind Publishing, 1–107. [Engl. trans. ed. W. J. Emery.].

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 248 86 2
PDF Downloads 126 63 0

Equations of Motion Using Thermodynamic Coordinates

View More View Less
  • 1 College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
Restricted access

Abstract

The forms of the primitive equations of motion and continuity are obtained when an arbitrary thermodynamic state variable=mrestricted only to be vertically monotonic=mis used as the vertical coordinate. Natural generalizations of the Montgomery and Exner functions suggest themselves. For a multicomponent fluid like seawater the dependence of the coordinate on salinity, coupled with the thermobaric effect, generates contributions to the momentum balance from the salinity gradient, multiplied by a thermodynamic coefficient that can be completely described given the coordinate variable and the equation of state. In the vorticity balance this term produces a contribution identified with the baroclinicity vector. Only when the coordinate variable is a function only of pressure and in situ specific volume does the coefficient of salinity gradient vanish and the baroclinicity vector disappear.

This coefficient is explicitly calculated and displayed for potential specific volume as thermodynamic coordinate, and for patched potential specific volume, where different reference pressures are used in various pressure subranges. Except within a few hundred decibars of the reference pressures, the salinity-gradient coefficient is not negligible and ought to be taken into account in ocean circulation models.

Corresponding author address: Dr. Roland A. de Szoeke, College of Oceanic and Atmospheric Sciences, Oregon State University, 104 Oceanography Admin. Building, Corvallis, OR 97331-5503.

Email: szoeke@oce.orst.edu

Abstract

The forms of the primitive equations of motion and continuity are obtained when an arbitrary thermodynamic state variable=mrestricted only to be vertically monotonic=mis used as the vertical coordinate. Natural generalizations of the Montgomery and Exner functions suggest themselves. For a multicomponent fluid like seawater the dependence of the coordinate on salinity, coupled with the thermobaric effect, generates contributions to the momentum balance from the salinity gradient, multiplied by a thermodynamic coefficient that can be completely described given the coordinate variable and the equation of state. In the vorticity balance this term produces a contribution identified with the baroclinicity vector. Only when the coordinate variable is a function only of pressure and in situ specific volume does the coefficient of salinity gradient vanish and the baroclinicity vector disappear.

This coefficient is explicitly calculated and displayed for potential specific volume as thermodynamic coordinate, and for patched potential specific volume, where different reference pressures are used in various pressure subranges. Except within a few hundred decibars of the reference pressures, the salinity-gradient coefficient is not negligible and ought to be taken into account in ocean circulation models.

Corresponding author address: Dr. Roland A. de Szoeke, College of Oceanic and Atmospheric Sciences, Oregon State University, 104 Oceanography Admin. Building, Corvallis, OR 97331-5503.

Email: szoeke@oce.orst.edu

Save