Impact of Subgrid-Scale Convection on Global Thermohaline Properties and Circulation

Seong-Joong Kim Canadian Center for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Seong-Joong Kim in
Current site
Google Scholar
PubMed
Close
and
Achim Stössel Department of Oceanography, Texas A&M University, College Station, Texas

Search for other papers by Achim Stössel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In most ocean general circulation models the simulated global-scale deep-ocean thermohaline properties appear to be chronically colder and fresher than observed. To some extent, this discrepancy has been known to be due to excessive open-ocean deep convection in the Southern Ocean (SO) caused by crude “convective adjustment” parameterizations on scales typically two orders of magnitude larger than the actual convection scale. To suppress the strength of open-ocean convection and to thereby eventually improve the global deep-ocean water properties, the authors first reduced convection in the SO in an ad hoc manner by activating it every 10 days rather than every model time step (20 hours). Second, a more physically based subgrid-scale convection in the SO was introduced by applying the penetrative plume convection scheme of Paluszkiewicz and Romea. With both treatments, SO convection decreased by about 30%, and the globally averaged deep-ocean potential temperature and salinity increased substantially to within 0.2°C and 0.02 psu of observed estimates. Furthermore, the plume convection scheme led to more realistic vertical temperature and salinity sections with more distinct Circumpolar Deep Water extension toward the south and a significant improvement of SO sea ice in terms of its thickness and its seasonality. The results of this study confirm that in order to obtain more realistic deep-ocean properties, open-ocean convection in the SO must be substantially weakened and shallower. This can be achieved by adopting a more physical plume convection scheme.

Corresponding author address: Dr. Seong-Joong Kim, Canadian Center for Climate Modeling and Analysis, University of Victoria, MSC Post Office Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada.

Abstract

In most ocean general circulation models the simulated global-scale deep-ocean thermohaline properties appear to be chronically colder and fresher than observed. To some extent, this discrepancy has been known to be due to excessive open-ocean deep convection in the Southern Ocean (SO) caused by crude “convective adjustment” parameterizations on scales typically two orders of magnitude larger than the actual convection scale. To suppress the strength of open-ocean convection and to thereby eventually improve the global deep-ocean water properties, the authors first reduced convection in the SO in an ad hoc manner by activating it every 10 days rather than every model time step (20 hours). Second, a more physically based subgrid-scale convection in the SO was introduced by applying the penetrative plume convection scheme of Paluszkiewicz and Romea. With both treatments, SO convection decreased by about 30%, and the globally averaged deep-ocean potential temperature and salinity increased substantially to within 0.2°C and 0.02 psu of observed estimates. Furthermore, the plume convection scheme led to more realistic vertical temperature and salinity sections with more distinct Circumpolar Deep Water extension toward the south and a significant improvement of SO sea ice in terms of its thickness and its seasonality. The results of this study confirm that in order to obtain more realistic deep-ocean properties, open-ocean convection in the SO must be substantially weakened and shallower. This can be achieved by adopting a more physical plume convection scheme.

Corresponding author address: Dr. Seong-Joong Kim, Canadian Center for Climate Modeling and Analysis, University of Victoria, MSC Post Office Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada.

Save
  • Akitomo, K., 1999: Open-ocean deep convection due to thermobaricity. 1. Scaling argument. J. Geophys. Res.,104 (C3), 5225–5234.

  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys.,17, 173–265.

  • Brennecke, W., 1921: Die ozeanographischen Arbeiten der Deutschen Antarktischen Expedition 1911–1912. Aus dem Archiv der Deutschen Seewarte, Vol. 39, No. 1, 216 pp.

  • Broecker, W. S., 1997: Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science,278, 1582–1589.

  • Bryan, K., J. K. Dukowicz, and R. D. Smith, 1999: On the mixing coefficient in the parameterization of bolus velocity. J. Phys. Oceanogr.,29, 2442–2456.

  • Cai, W., and R. J. Greatbatch, 1995: Compensation for the NADW outflow in a global ocean general circulation model. J. Phys. Oceanogr.,25, 226–241.

  • ——, and P. G. Baines, 1996: Interactions between thermohaline- and wind-driven circulations and their relevance to the dynamics of the Antarctic Circumpolar Current in a coarse-resolution global ocean general circulation model. J. Geophys. Res.,101 (C6), 14073–14093.

  • Callahan, J. E., 1972: The structure and circulation of deep water in the Antarctic. Deep-Sea Res.,19, 563–575.

  • Carmack, E. C., 1977: Water characteristics of the Southern Ocean south of Polar Front. Voyage of Discovery, M. Engel, Ed., Deep-Sea Res.,24 (Suppl.), 15–41.

  • ——, and P. D. Killworth, 1978: Formation and interleaving of abyssal water masses off Wilkes Land, Antarctica. Deep-Sea Res.,25, 357–369.

  • Cavalieri, D. J., and S. Martin, 1985: A passive microwave study of polynyas along the Antarctic Wilkes Land coast. Oceanology of the Antarctic Continental Shelf, S. S. Jacobs, Ed. Antarctic Research Series, Vol. 43, Amer. Geophys. Union, 227–252.

  • Clarke, R. A., and J.-C. Gascard, 1983: The formation of Labrador Sea Water. Part I: Large-scale processes. J. Phys. Oceanogr.,13, 1764–1778.

  • Cummins, P. F., G. Holloway, and A. E. Gargett, 1990: Sensitivity of the GFDL ocean general circulation model to a parameterization of vertical diffusion. J. Phys. Oceanogr.,20, 817–830.

  • Danabasoglu, G., and J. C. McWilliams, 1995: Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J. Climate,8, 2967–2987.

  • Delworth, T., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate,6, 1993–2011.

  • Denbo, D. W., and E. D. Skyllingstad, 1996: An ocean large eddy model with application to convection in the Greenland Sea. J. Geophys. Res.,101, 1095–1110.

  • Doney, S. C., W. G. Large, and F. O. Bryan, 1998: Surface ocean fluxes and water mass transformation rates in the coupled NCAR climate system model. J. Climate,11, 1420–1441.

  • Drijfhout, S., C. Heinze, M. Latif, and E. Maier-Reimer, 1996: Mean circulation and internal variability in an ocean primitive equation model. J. Phys. Oceanogr.,26, 559–580.

  • Duffy, P. B., and K. Caldeira, 1997: Sensitivity of simulated salinity in a three-dimensional ocean model to upper ocean transport of salt from sea ice formation. Geophys. Res. Lett.,24 (11), 1323–1326.

  • ——, ——, J. Selvaggi, and M. Hoffert, 1997: Effects of subgrid-scale mixing parameterizations on simulated distributions of natural 14C, temperature, and salinity in a three-dimensional ocean general circulation model. J. Phys. Oceanogr.,27, 498–523.

  • ——, M. Eby, and A. J. Weaver, 1999: Effects of salt rejected during formation of sea ice on results of a global ocean–atmosphere–sea ice climate model. Geophys. Res. Lett.,26 (12), 1739–1742.

  • England, M. H., 1993: On the formation of global-scale water masses in ocean general circulation models. J. Phys. Oceanogr.,23, 1523–1552.

  • ——, and S. Rahmstorf, 1999: Sensitivity of ventilation rates and radiocarbon uptake to subgrid-scale mixing in ocean models. J. Phys. Oceanogr.,29, 2802–2827.

  • Fichefet, T., S. Hovine, and J.-C. Duplessy, 1994: A model study of the Atlantic thermohaline circulation during the last glacial maximum. Nature,372, 252–255.

  • Fieux, M., C. Andrié, P. Delecluse, A. G. Ilahude, A. Kartavtseff, F. Mantisi, R. Molcard, and J.C. Swallow, 1994: Measurements within the Pacific–Indian Oceans throughflow region. Deep-Sea Res.,41, 1091–1130.

  • Flato, G. M., G. J. Boer, W. G. Lee, N. A. McFarlane, D. Ramsden, M. C. Reader, and A. J. Weaver, 2000: The Canadian Center for Climate Modelling and Analysis global coupled model and its climate. Climate Dyn.,16, 451–467.

  • Foster, T. D., and E. C. Carmack, 1976: Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res.,23, 301–317.

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr.,20, 150–155.

  • ——, J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced transports in ocean circulation models. J. Phys. Oceanogr.,25, 463–474.

  • Gill, A. E., 1973: Circulation and bottom water production in the Weddell Sea. Deep-Sea Res.,20, 111–140.

  • Gloersen, P., W. J. Campbell, D. J. Cavalieri, J. C. Comiso, C. L. Parkinson, and H. H. Zwally, 1992: Arctic and Antarctic sea ice, 1978–1987: Satellite passive-microwave observations and analysis. NASA Spec. Publ., 511, 290 pp. [Available from Laboratory for Hydrospheric Processes, NASA Goddard Space Flight Center, Greenbelt, MD 20771.].

  • Goosse, H., 1997: Modelling the large-scale behavior of the coupled ocean–sea ice system. Ph.D. dissertation, Université Catholique de Louvain, 231 pp. [Available from Université Catholique de Louvain, Louvain-la-Neuve, Belgium.].

  • Gordon, A. L., 1974: Varieties and variability of Antarctic Bottom Water. Colloque International sur les Processus de Formation des Eaux Oceaniques Profondes, Paris, France, Colloq. Int. du Centre National de la Recherche Scientifique, Vol. 215, 33–47.

  • ——, 1978: Deep Antarctic convection west of Maud Rise. J. Phys. Oceanogr.,8, 600–612.

  • ——, 1986: Interocean exchange of thermocline water. J. Geophys. Res.,91 (C4), 5037–5046.

  • ——, 1998: Western Weddell Sea thermohaline stratification. Ocean, Ice, and Atmosphere: Interactions at the Antarctic continental margin, S. S. Jacobs and R. F. Weiss, Eds. Antarctic Research Series, Vol. 75, Amer. Geophys. Union, 215–240.

  • ——, and P. Tchernia, 1972: Water of the continental margin off Adélie Coast, Antarctica. Antarctic Oceanology II: The Australian-New Zealand Sector, D. E. Hayes, Ed. Antarctic Research Series, Vol. 19, Amer. Geophys. Union, 59–69.

  • ——, and B. A. Huber, 1990: Southern Ocean winter mixed layer. J. Geophys. Res.,95 (C7), 11 635–11 672.

  • Hastenrath, S., 1982: On the meridional heat transports in the world ocean. J. Phys. Oceanogr.,12, 922–927.

  • Hellerman, S., and M. Rosenstein, 1983: Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr.,13, 1093–1104.

  • Hibler, W. D., III, 1979: A dynamic and thermodynamic sea ice model. J. Phys. Oceanogr.,9, 815–846.

  • Hirst, A. C., and W. Cai, 1994: Sensitivity of a World Ocean GCM to changes in subsurface mixing parameterization. J. Phys. Oceanogr.,24, 1256–1279.

  • ——, and T. J. McDougall, 1996: Deep-water properties and surface buoyancy flux as simulated by a z-coordinate model including eddy-induced advection. J. Phys. Oceanogr.,26, 1320–1343.

  • Hogg, N. G., G. Siedler, and W. Zenk, 1999: Circulation and variability at the southern boundary of the Brazil Basin. J. Phys. Oceanogr.,29, 145–157.

  • Hu, D., 1997: Global-scale water masses, meridional circulation, and heat transport simulated with a global isopycnal ocean model. J. Phys. Oceanogr.,27, 96–120.

  • Jacobs, S. S., R. G. Fairbanks, and Y. Horibe, 1985: Origin and evolution of water masses near the Antarctic continental margin:Evidence from H2 18O/H2 16O ratios in sea water. Oceanology of the Antarctic Continental Shelf, S. S. Jacobs, Ed., Antarctic Research Series, Vol. 43, Amer. Geophys. Union, 59–85.

  • Killworth, P. D., 1979: On “chimney” formations in the ocean. J. Phys. Oceanogr.,9, 531–554.

  • ——, 1983: Deep convection in the World Ocean. Rev. Geophys.,21, 1–26.

  • Kim, S.-J., 1995: The transition zone between the oceanic and shelf regimes around Antarctica. M.S. thesis, Dept. of Oceanography, Texas A&M University, 70 pp.

  • ——, and A. Stössel, 1998: On the representation of the Southern Ocean water masses in an ocean climate model. J. Geophys. Res.,103 (C11), 24 891–24 906.

  • Labrador Sea Group, 1998: The Labrador Sea Deep Convection Experiment. Bull. Amer. Meteor. Soc.,79, 2033–2058.

  • Large, W. G., G. Danabasoglu, and S. C. Doney, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr.,27, 2418–2447.

  • Legutke, S., and R. Voss, 1999: The Hamburg Atmosphere–Ocean Coupled Circulation Model ECHO-G. Tech. Rep. 14, German Climate Computer Centre (DKRZ), Hamburg, Germany, 61 pp. [Available from Deutsches Klimarechenzentrum, Bundesstrasse 55, D-20146 Hamburg, Germany.].

  • ——, E. Maier-Reimer, A. Stössel, and A. Hellbach, 1997: Ocean–sea ice coupling in a global ocean general circulation model. Ann. Glaciol.,25, 116–120.

  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper No. 13, U.S. Govt. Printing Office, 173 pp. and 17 microfiche.

  • Lilly, J. M., P. B. Rhines, M. Visbeck, R. Davis, J. R. N. Lazier, F. Schott, and D. Farmer, 1999: Observing deep convection in the Labrador Sea during winter 1994/95. J. Phys. Oceanogr.,29, 2065–2098.

  • Macdonald, A. M., and C. Wunsch, 1996: An estimate of global ocean circulation and heat fluxes. Nature,382, 436–439.

  • Maier-Reimer, E., U. Mikolajewicz, and K. Hasselmann, 1993: Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. J. Phys. Oceanogr.,23, 731–757.

  • Manabe, S., and R. J. Stouffer, 1996: Low-frequency variability of surface air temperature in a 1000-year integration of a coupled atmosphere–ocean–land surface model. J. Climate,9, 376–393.

  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys.,37, 1–64.

  • Martinson, D. G., 1990: Evolution of Southern Ocean winter mixed layer and sea ice: Open-ocean deep water formation and ventilation. J. Geophys. Res.,95, 11 641–11 654.

  • McCartney, M. S., 1977: Subantarctic Mode Water. Voyage of Discovery. M. Engel, Ed., Deep-Sea Res.,24 (Suppl.), 43–84.

  • Molinelli, E., 1981: The Antarctic influence on the Antarctic Intermediate Water. J. Mar. Res.,39, 267–293.

  • Nakata, M., and N. Suginohara, 1998: Role of deep stratification in transporting deep water from the Atlantic to the Pacific. J. Geophys. Res.,103, 1067–1086.

  • Oberhuber, J. M., 1993: Simulation of the Atlantic circulation with a coupled sea ice–mixed layer–isopycnal general circulation model. Part I: Model description. J. Phys. Oceanogr.,23, 808–829.

  • Orsi, A. H., T. Whitworth III, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res.,42, 641–673.

  • ——, G. C. Johnson, and J. L. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Progress in Oceanography, Vol. 43, Pergamon, 55–109.

  • Owens, W. B., and P. Lemke, 1990: Sensitivity studies with a sea ice–mixed layer–pycnocline model in the Weddell Sea. J. Geophys. Res.,95, 9527–9538.

  • Paluszkiewicz, T., and R. D. Romea, 1997: A one-dimensional model for the parameterization of deep convection in the ocean. Dyn. Atmos. Oceans,26, 95–130.

  • Parkinson, C. L., and W. M. Washington, 1979: A large-scale numerical model of sea ice. J. Geophys. Res.,84, 311–337.

  • Pierce, D. W., K.-Y. Kim, and T. P. Barnett, 1996: Variability of the thermohaline circulation in an ocean general circulation model coupled to an atmospheric energy balance model. J. Phys. Oceanogr.,26, 725–738.

  • Price, J. F., and M. Baringer, 1994: Outflows and deep water production by marginal seas. Progress in Oceanography, Vol. 33, Pergamon, 161–200.

  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr.,12, 1154–1158.

  • Reid, J. L., and R. J. Lynn, 1971: On the influence of the Norwegian–Greenland and Weddell Seas upon the bottom waters of the Indian and Pacific Oceans. Deep-Sea Res.,18, 1063–1088.

  • Rintoul, S. R., 1998: On the origin and influence of Adélie Land bottom water. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. Weiss, Eds. Antarctic Research Series, Vol. 75, Amer. Geophys. Union, 151–171.

  • Roach, A. T., K. Aagaard, and F. Carsey, 1993: Coupled ice–ocean variability in the Greenland Sea. Atmos.-Ocean,31, 319–337.

  • Rudels, B., D. Quadfasel, H. Friedrich, and M.-N. Houssasi, 1989: Greenland sea convection in the winter of 1987–1988. J. Geophys. Res.,94, 3223–3227.

  • Schott, F., M. Visbeck, and J. Fischer, 1993: Observations of vertical currents and convection in the central Greenland Sea during the winter of 1988–1989. J. Geophys. Res.,98, 14 402–14 421.

  • Semtner, A. J., Jr., and R. M. Chervin, 1992: Ocean general circulation from a global eddy-resolving model. J. Geophys. Res.,97, 5493–5550.

  • Stammer, D., R. Tokmakian, A. Semtner, and C. Wunsch, 1996: How well does a ¼° global circulation model simulate large-scale oceanic observations? J. Geophys. Res.,101, 25 779–25 811.

  • Stocker, T. F., D. G. Wright, and W. S. Broecker, 1992: The influence of high-latitude surface forcing on the global thermohaline circulation. Paleoceanography,7, 529–541.

  • Stössel, A., 1992: Sensitivity of Southern Ocean sea ice simulations to different atmospheric forcing algorithms. Tellus,44A, 395–413.

  • ——, and W. B. Owens, 1992: The Hamburg sea ice model. Modell Betreuungsgrupe Tech. Rep. 3, Deutsches Klimarechenzentrum, 61 pp. [Available from Max-Planck-Institut für Meteorologie, Bundesstrasse 55, D-2000 Hamburg 13, Germany.].

  • ——, S.-J. Kim, and S. S. Drijfhout, 1998: The impact of Southern Ocean sea ice in a global ocean model. J. Phys. Oceanogr.,28, 1999–2018.

  • Talley, L. D., 1984: Meridional heat transport in the Pacific Ocean. J. Phys. Oceanogr.,14, 231–241.

  • Toggweiler, J. R., and B. Samuels, 1995: Effects of sea ice on the salinity of Antarctic Bottom Waters. J. Phys. Oceanogr.,25, 1980–1997.

  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 367 pp.

  • Visbeck, M., J. Marshall, and T. Haine, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr.,27, 381–402.

  • Wadhams, P., 1994: Sea ice thickness changes and their relation to climate. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr. Ser., No. 85, Amer. Geophys. Union, 337–361.

  • Warren, B. A., 1981: Deep circulation of the World Ocean. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., The MIT Press, 6–41.

  • Washington, W. M., and G. A. Meehl, 1996: High-latitude climate change in global coupled ocean–atmosphere–sea ice model with increased atmospheric CO2. J. Geophys. Res.,101, 12 795–12 801.

  • Weatherly, J. W., T. W. Bettge, and B. P. Briegleb, 1997: Simulation of sea ice in the NCAR climate system model. Ann. Glaciol.,25, 107–110.

  • ——, B. P. Briegleb, and W. G. Large, 1998: Sea ice and polar climate in the NCAR CSM. J. Climate,11, 1472–1486.

  • Whitworth, T., III, and R. G. Peterson, 1985: Volume transport of the Antarctic circumpolar current from bottom pressure measurements. J. Phys. Oceanogr.,15, 810–816.

  • ——, and W. D. Nowlin Jr., 1987: Water masses and currents of the Southern Ocean at the Greenwich Meridian. J. Geophys. Res.,92, 6462–6476.

  • ——, A. H. Orsi, S.-J. Kim, W. D. Nowlin Jr., and R. A. Locarnini, 1998: Water masses and mixing near the Antarctic Slope Front. Ocean, Ice, and Atmosphere: Interations at the Antarctic Continental Margin, S. S. Jacobs and R. Weiss, Eds. Antarctic Research Series, Vol. 75, Amer. Geophys. Union, 1–27.

  • Wolff, J., E. Maier-Reimer, and S. Legutke, 1997: The Hamburg Ocean Primitive Equation Model (HOPE). Modell Beratungsgruppe Tech. Rep. 13, Deutsches Kimarechenzentrum, 98 pp. [Available from Max-Planck-Institut für Meteorologie, Bundesstrasse 55, D-20146 Hamburg, Germany.].

  • Woodruff, S. D., R. J. Slutz, R. L. Jenne, and P. M. Streurer, 1987: A comprehensive ocean–atmosphere dataset. Bull. Amer. Meteor. Soc.,68, 1239–1250.

  • Worby, A. P., N. L. Bindoff, V. I. Lytle, I. Allison, and R. A. Masson, 1996: Winter ocean/sea ice interactions studied in the east Antarctic. Eos, Trans. Amer. Geophys. Union,77(46), 456–457.

  • Zwally, H. J., J. C. Comiso, and A. L. Gordon, 1985: Antarctic offshore leads and polynyas and oceanographic effects. Oceanology of the Antarctic Continental Shelf, S. S. Jacobs, Ed. Antarctic Research Series, Vol. 43, Amer. Geophys. Union, 203–226.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 934 656 45
PDF Downloads 151 42 0