• Anisimova, E. P., and A. A. Speranskaya, 1970: Air flow structure in the immediate vicinity of the disturbed surface of the water. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.), 6 , 381382.

    • Search Google Scholar
    • Export Citation
  • ——, Dobroklonsky, S. V., B. M. Lesnikov, and A. A. Speranskaya, 1978: Transformation of wind velocity profiles and drift currents along a wind-generated wave profile. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.), 14 , (4),. 320322.

    • Search Google Scholar
    • Export Citation
  • ——, Makova, V. I., E. A. Nikitina, and A. A. Speranskaya, 1982: Momentum-flux spectrum above a developing wind wave. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., (Engl. Transl.), 18 , (5),. 435439.

    • Search Google Scholar
    • Export Citation
  • Antonia, R. A., and A. J. Chambers, 1980: Wind-wave-induced disturbances in the marine surface layer. J. Phys. Oceanogr, 10 , 611622.

  • Belcher, S. E., and J. C. R. Hunt, 1998: Turbulent flow over hills and waves. Annu. Rev. Fluid. Mech, 30 , 507538.

  • Benilov, A. Y., O. A. Kuznetsov, and G. N. Panin, 1974: On the analysis of wind wave-induced disturbances in the atmospheric turbulent surface layer. Bound.-Layer Meteor, 6 , 269285.

    • Search Google Scholar
    • Export Citation
  • Caudal, G., 1993: Self-consistency between wind stress, wave spectrum, and wind-induced wave growth for fully rough air–sea interface. J. Geophys. Res, 98 , 22 74322 752.

    • Search Google Scholar
    • Export Citation
  • Chalikov, D., and M. Yu. Belevich, 1993: One dimensional theory of the wave-boundary layer. Bound.-Layer Meteor, 63 , 6596.

  • Chambers, A. J., and R. A. Antonia, 1981: Wave-induced effect on the Reynolds shear stress and heat flux in the marine surface layer. J. Phys. Oceanogr, 11 , 116121.

    • Search Google Scholar
    • Export Citation
  • Davidson, K. L., 1970: An investigation of the influence of the water waves on the adjacent airflow. Ph.D. thesis, University of Michigan, Ann Arbor, MI, 259 pp.

    • Search Google Scholar
    • Export Citation
  • ——,. 1974: Observational results on the influence of stability and wind–wave coupling on momentum transfer and turbulent fluctuations over ocean waves. Bound.-Layer Meteor, 6 , 305331.

    • Search Google Scholar
    • Export Citation
  • ——, and Frank, A. J., 1973: Wave-related fluctuations in the airflow above natural waves. J. Phys. Oceanogr, 3 , 102119.

  • Davis, R. E., 1972: On prediction of the turbulent flow over a wavy boundary. J. Fluid Mech, 52 , 287306.

  • Dobson, E. W., S. D. Smith, and R. J. Anderson, 1994: Measuring the relationship between wind stress and sea state in the open ocean in the presence of swell. Atmos.–Ocean, 32 , 237256.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1990: Air–sea interaction. The Sea. Vol. 9: Ocean Engineering Science, B. LeMehaute and D. M. Hanes, Eds., John Wiley and Sons, 239–292.

    • Search Google Scholar
    • Export Citation
  • ——, Drennan, W. M., and K. B. Katsaros, 1997: The air–sea momentum flux in conditions of wind sea and swell. J. Phys. Oceanogr, 27 , 20872099.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., K. K. Kahma, and M. A. Donelan, 1999: On momentum flux and velocity spectra over waves. Bound.-Layer Meteor, 92 , 489515.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., S. Wetzel, C. Friehe, S. Miller, and T. Hristov, 1997: Energy flux and dissipation profiles in the marine surface layer. Preprints, 12th Symp. on Boundary Layers and Turbulence, Vancouver, BC, Canada, Amer. Meteor. Soc., 314–315.

    • Search Google Scholar
    • Export Citation
  • ——, Hinton, A. A., K. E. Prada, J. E. Hare, and C. W. Fairall, 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol, 15 , 547562.

    • Search Google Scholar
    • Export Citation
  • Elliott, J. A., 1972: Microscale pressure near waves being generated by the wind. J. Fluid Mech, 54 , 427448.

  • Fairall, C. W., and S. E. Larsen, 1986: Inertial dissipation methods and turbulent fluxes at the air–ocean interface. Bound.-Layer Meteor, 34 , 287301.

    • Search Google Scholar
    • Export Citation
  • ——, Bradley, E. F., D. P. Rogers, J. B. Edson, and G. S. Young, 1996a: Bulk parameterization of air–sea fluxes in TOGA COARE. J. Geophys. Res, 101 , (C2),. 37473764.

    • Search Google Scholar
    • Export Citation
  • ——, Godfrey, J. S., G. A. Wick, J. B. Edson, and G. S. Young, 1996b: Cool-skin and warm layer effects on sea surface temperature. J. Geophys. Res, 101 , (C1),. 12951308.

    • Search Google Scholar
    • Export Citation
  • ——, Grachev, A. A., A. J. Bedard, and R. T. Nishiyama, 1996c: Wind, wave, stress, and surface roughness relationships from turbulence measurements made on R/P FLIP in the SCOPE Experiment. NOAA Tech. Memo. ERL ETL-268, 37 pp. [Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.].

    • Search Google Scholar
    • Export Citation
  • ——, White, A. B., J. B. Edson, and J. E. Hare, 1997: Integrated shipboard measurements of the marine boundary layer. J. Atmos. Oceanic Technol, 14 , 338359.

    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., F. Hansen, M. Courtney, and T. Herbers, 1993: Directional attributes of the ocean surface wind stress vector. J. Geophys. Res, 98 , 16 57116 582.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., and A. C. M. Beljaars, 1991: On the turbulent fluxes of buoyancy, heat, and moisture at the air–sea interface at low wind speeds. J. Geophys. Res, 96 , 22 04322 048.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., and C. W. Fairall, 1997: Dependence of the Monin–Obukhov stability parameter on the bulk Richardson number over the ocean. J. Appl. Meteor, 36 , 406414.

    • Search Google Scholar
    • Export Citation
  • ——, ——, and Zilitinkevich, S. S., 1997: Surface-layer scaling for the convection-induced stress regime. Bound.-Layer Meteor, 83 , (3),. 423439.

    • Search Google Scholar
    • Export Citation
  • ——, ——, and Larsen, S. E., 1998: On the determination of the neutral drag coefficient in the convective boundary layer. Bound.-Layer Meteor, 86 , (2),. 257278.

    • Search Google Scholar
    • Export Citation
  • Hare, J. E., T. Hara, J. B. Edson, and J. M. Wilczak, 1997: A similarity analysis of the structure of airflow over surface waves. J. Phys. Oceanogr, 27 , 10181037.

    • Search Google Scholar
    • Export Citation
  • Harris, D. L., 1966: The wave-driven wind. J. Atmos. Sci, 23 , 688693.

  • Hsu, C-T., E. Y. Hsu, and R. L. Street, 1981: On the structure of turbulent flow over a progressive water wave: Theory and experiment in a transformed, wave-following coordinate system. J. Fluid Mech, 105 , 87117.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., L. F. Bliven, S. R. Long, and P. S. DeLeonibus, 1986: A study of the relationship among wind speed, sea state, and the drag coefficient for a developing wave field. J. Geophys. Res, 91 , 77337742.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1989: Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr, 19 , 745754.

  • ——,. 1991: Quasi-linear theory of wind wave generation applied to wave forecasting. J. Phys. Oceanogr, 21 , 16311642.

  • Kinsman, B., 1965: Wind Waves, Their Generation and Propagation on the Ocean Surface. Prentice-Hall, 676 pp.

  • Kitaigorodskii, S. A., 1970: The Physics of Air–Sea Interaction, Hydrometeoizdat, Leningrad, 284 pp. (Translated from Russian by A. Baruch, Israel Program for Scientific Translations, 1973, 273 pp.).

    • Search Google Scholar
    • Export Citation
  • Lai, R. J., and O. H. Shemdin, 1971: Laboratory investigation of air turbulence above simple water waves. J. Geophys. Res, 76 , 73347350.

    • Search Google Scholar
    • Export Citation
  • Li, P. Y., 1995: A numerical study on energy transfer between turbulent air flow and finite amplitude water waves. Ph.D. thesis, York University, 181 pp.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., V. N. Kudryavtsev, and C. Mastenbroek, 1995: Drag of the sea surface. Bound.-Layer Meteor, 73 , 159182.

  • Makova, V. I., 1975: Features of the dynamics of turbulence in the marine atmospheric surface layer at various stages in the development of waves. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.), 11 , 177182.

    • Search Google Scholar
    • Export Citation
  • ——,. 1977: Momentum and energy exchange between wind and waves various stages in the development of waves (in Russian). Tr. Gos. Okeanogr. Inst, 138 , 5463.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1957: On the generation of surface waves by shear flows. J. Fluid Mech, 3 , 185204.

  • Nordeng, T. E., 1991: On the wave age dependent drag coefficient and roughness length at sea. J. Geophys. Res, 96 , 71677174.

  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. 2d ed. Cambridge University Press, 336 pp.

  • Pierson, W. J. Jr, and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res, 69 , 51815190.

    • Search Google Scholar
    • Export Citation
  • Rieder, K., J. A. Smith, and R. A. Weller, 1994: Observed directional characteristics of the wind, wind stress, and surface waves on the open ocean. J. Geophys. Res, 99 , 22 59822 596.

    • Search Google Scholar
    • Export Citation
  • Smedman, A-S., M. Tjernström, and U. Högström, 1994: Near-neutral marine atmospheric boundary layer with no surface shearing stress: A case study. J. Atmos. Sci, 51 , 33993411.

    • Search Google Scholar
    • Export Citation
  • ——, Högström, U., H. Bergström, A. Rutgersson, K. K. Kahma, and H. Pettersson, 1999: A case study of air–sea interaction during swell conditions. J. Geophys. Res, 104 , (C11),. 25 83325 851.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C-H. Moeng, 2000: Simulation of turbulent flow over idealized water waves. J. Fluid Mech, 404 , 4785.

    • Search Google Scholar
    • Export Citation
  • Takeuchi, K., E. Leavitt, and S. P. Chao, 1977: Effects of water waves on the structure of turbulent shear flow. J. Fluid Mech, 80 , 535559.

    • Search Google Scholar
    • Export Citation
  • Volkov, Yu A., 1968: An experimental study of the characteristics of turbulence in the marine surface layer and wind-driven waves (in Russian). Ph.D. thesis, Institute of Oceanology, Russian Academy of Science, Moscow, Russia, 132 pp.

    • Search Google Scholar
    • Export Citation
  • ——,. 1969: The spectra of velocity and temperature fluctuations in airflow above the agitated sea-surface. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.), 5 , (12),. 723730.

    • Search Google Scholar
    • Export Citation
  • ——,. 1970: Turbulent flux of momentum and heat in the atmospheric surface layer over a disturbed sea-surface. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.), 6 , (12),. 770774.

    • Search Google Scholar
    • Export Citation
  • Wetzel, S. W., 1996: An investigation of the wave-induced momentum flux through phase averaging of open ocean wind and wave fields. M.S. thesis, Joint Program in Applied Ocean Physics and Engineering, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Woods Hole, MA, 93 pp.

    • Search Google Scholar
    • Export Citation
  • White, A. B., C. W. Fairall, and J. B. Snider, 1995: Surface-based remote sensing of marine boundary-layer cloud properties. J. Atmos. Sci, 52 , 28272838.

    • Search Google Scholar
    • Export Citation
  • Yefimov, V. V., 1970: On the structure of the wind velocity field in the atmospheric near-water layer and the transfer of wind energy to sea waves. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.), 6 , 621629.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 309 296 13
PDF Downloads 176 165 11

Upward Momentum Transfer in the Marine Boundary Layer

View More View Less
  • 1 Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Environmental Technology Laboratory, Boulder, Colorado
  • | 2 NOAA/Environmental Technology Laboratory, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This paper focuses on the study of momentum flux between ocean and atmosphere in light winds and is based on the data collected during several field campaigns, the Atlantic Stratocumulus Transition Experiment, the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment, and the San Clemente Ocean Probing Experiment. Weak wind at sea is frequently accompanied by the presence of fast-traveling ocean swell, which dramatically affects momentum transfer. It is found that the mean momentum flux (uw covariance) decreases monotonically with decreasing wind speed, and reaches zero around a wind speed U ≈ 1.5–2 m s−1, which corresponds to wave age cp/U ≈ 10 for wave/swell conditions of the experiments in this study. Further decrease of the wind speed (i.e., increase of the wave age) leads to a sign reversal of the momentum flux, implying negative drag coefficient. Upward momentum transfer is associated with fast-traveling swell running in the same direction as the wind, and this regime can be treated as swell regime or mature sea state. In the swell regime the surface stress vector is nearly opposite to wind and swell directions, and the wind is roughly aligned in the swell direction. Thus, a weak wind over ocean swell can be frequently associated with upward momentum transfer (i.e., from ocean to atmosphere).

Additional affiliation: A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

Corresponding author address: Dr. Andrey A. Grachev, NOAA/Environmental Technology Laboratory, R/ET7, 325 Broadway, Boulder, CO 80305-3328. Email: andrey.grachev@noaa.gov

Abstract

This paper focuses on the study of momentum flux between ocean and atmosphere in light winds and is based on the data collected during several field campaigns, the Atlantic Stratocumulus Transition Experiment, the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment, and the San Clemente Ocean Probing Experiment. Weak wind at sea is frequently accompanied by the presence of fast-traveling ocean swell, which dramatically affects momentum transfer. It is found that the mean momentum flux (uw covariance) decreases monotonically with decreasing wind speed, and reaches zero around a wind speed U ≈ 1.5–2 m s−1, which corresponds to wave age cp/U ≈ 10 for wave/swell conditions of the experiments in this study. Further decrease of the wind speed (i.e., increase of the wave age) leads to a sign reversal of the momentum flux, implying negative drag coefficient. Upward momentum transfer is associated with fast-traveling swell running in the same direction as the wind, and this regime can be treated as swell regime or mature sea state. In the swell regime the surface stress vector is nearly opposite to wind and swell directions, and the wind is roughly aligned in the swell direction. Thus, a weak wind over ocean swell can be frequently associated with upward momentum transfer (i.e., from ocean to atmosphere).

Additional affiliation: A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

Corresponding author address: Dr. Andrey A. Grachev, NOAA/Environmental Technology Laboratory, R/ET7, 325 Broadway, Boulder, CO 80305-3328. Email: andrey.grachev@noaa.gov

Save