• Alvarez, A., J. Tintore, G. Holloway, M. Eby, and J. M. Beckers, 1994: Effect of topographic stress on the circulation in the western Mediterranean. J. Geophys. Res, 99 , 16 05316 064.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 1966: Computational design for long term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow, Part 1. J. Comput. Phys, 1 , 119143.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., and J. F. Middleton, 1983: Statistical mechanics of a finite difference approximation to the barotropic vorticity equation. Quart. J. Roy. Meteor. Soc, 109 , 795808.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., and D. B. Haidvogel, 1976: Two-dimensional turbulence above topography. J. Fluid Mech, 78 , 129154.

  • Carnevale, G. F., 1982: Statistical features of the evolution of two-dimensional turbulence. J. Fluid Mech, 122 , 143153.

  • ——, and Frederiksen, J. S., 1987: Nonlinear stability and statistical mechanics of flow over topography. J. Fluid Mech, 175 , 157181.

    • Search Google Scholar
    • Export Citation
  • ——, Frisch, U., and R. Salmon, 1981: H theorems in statistical fluid dynamics. J. Phys, 14A , 17011718.

  • Chavanis, P. H., and J. Sommeria, 1996: Classification of self-organized vorticies in two-dimensional turbulence: The case of a bounded domain. J. Fluid Mech, 314 , 267297.

    • Search Google Scholar
    • Export Citation
  • ——, and ——,. 1998: Classification of robust isolated vorticies in two-dimensional hydrodynamics. J. Fluid Mech, 356 , 259296.

  • Chen, C., and R. C. Beardsley, 1995: A numerical study of tidal rectification over finite-amplitude banks. Part I: Symmetric banks. J. Phys. Oceanogr, 25 , 20902109.

    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., and G. Holloway, 1994: On eddy–topographic stress representation. J. Phys. Oceanogr, 24 , 700706.

  • ——, and Vallis, G. K., 1994: Solvers for self-adjoint elliptic problems in irregular two-dimensional domains. ACM Trans. Math. Software, 20 , 247261.

    • Search Google Scholar
    • Export Citation
  • Eby, M., and G. Holloway, 1994: Sensitivity of a large scale ocean model to a parameterization of topographic stress. J. Phys. Oceanogr, 24 , 25772588.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and G. Holloway, 1998: Simulations of CFC-11 outflow and seawater age in the deep North Atlantic. J. Geophys. Res, 103 , 15 88515 901.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 1999: On subgrid scale parameterizations of eddy–topographic force, eddy viscosity and stochastic backscatter for flow over topography. J. Atmos. Sci, 56 , 14811494.

    • Search Google Scholar
    • Export Citation
  • ——, and Sawford, B. L., 1980: Statistical dynamics of two-dimensional inviscid flow on a sphere. J. Atmos. Sci, 37 , 717732.

  • Fyfe, J., and G. Marinone, 1995: On the role of unresolved eddies in a model of the residual currents in the central Strait of Georgia, B.C. Atmos.–Ocean, 33 , 613619.

    • Search Google Scholar
    • Export Citation
  • Garreau, P., and R. Mazé, 1992: Tidal rectification and mass transport over a shelf break: A barotropic frictionless model. J. Phys. Oceanogr, 22 , 719731.

    • Search Google Scholar
    • Export Citation
  • Haberman, R., 1983: Elementary Applied Partial Differential Equations. Prentice-Hall, 533 pp.

  • Hogan, P. J., and H. E. Hurlburt, 2000: Impact of upper ocean–topographical coupling and isopycnal outcropping in Japan/East Sea models with 1/8° to 1/64° resolution. J. Phys. Oceanogr, 30 , 25352561.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1987: Systematic forcing of large-scale geophysical flows by eddy–topography interaction. J. Fluid Mech, 184 , 463476.

    • Search Google Scholar
    • Export Citation
  • ——,. 1992: Representing topographic stress for large scale ocean models. J. Phys. Oceanogr, 22 , 10331046.

  • ——, Sou, T., and M. Eby, 1995: Dynamics of circulation of the Japan Sea. J. Mar. Res, 53 , 539569.

  • Kazantsev, E., J. Sommeria, and J. Verron, 1998: Subgrid-scale eddy parameterization by statistical mechanics in a barotropic ocean model. J. Phys. Oceanogr, 28 , 10171042.

    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1975: Statistical dynamics of two-dimensional flow. J. Fluid Mech, 67 , 155175.

  • Loder, J. W., 1980: Topographic rectification of tidal currents on the sides of Georges Bank. J. Phys. Oceanogr, 10 , 13991416.

  • Marinone, S. G., 1998: Effects of the topographic stress on the tide- and wind-induced currents in the Gulf of California. J. Geophys. Res, 103 , 18 43718 446.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., 1998: Effects of stratification on quasi-geostrophic inviscid equilibria. J. Fluid Mech, 354 , 345356.

  • ——, and Holloway, G., 1996: Inviscid quasi-geostrophic flow over topography: Testing statistical mechanical theory. J. Fluid Mech, 309 , 8591.

    • Search Google Scholar
    • Export Citation
  • Miller, J., 1990: Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett, 22 , 21372140.

  • Nazarenko, L., G. Holloway, and N. Tausnev, 1998: Dynamics of transport of ‘Atlantic signature’ in the Arctic Ocean. J. Geophys. Res, 103 , 31 00331 015.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer, 710 pp.

  • Robert, R., and J. Sommeria, 1991: Statistical equilibrium states for two-dimensional flows. J. Fluid Mech, 229 , 291310.

  • Salmon, R., 1982: Geostrophic turbulence. Topics in Ocean Physics: Proceedings of the International School of Physics ‘Enrico Fermi,’ Course LXXX), A. R. Osborne and P. Malanotte, Eds., Elsevier, 30–78.

    • Search Google Scholar
    • Export Citation
  • ——,. 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.

  • ——, Holloway, G., and M. C. Hendershott, 1976: The equilibrium statistical mechanics of simple quasi-geostrophic models. J. Fluid Mech, 75 , 691703.

    • Search Google Scholar
    • Export Citation
  • Shore, J. A., 1996: Tidal residual circulation over an axisymmetric seamount. Ph.D. thesis, University of British Columbia, 175 pp.

  • Sou, T., G. Holloway, and M. Eby, 1996: Effects of topographic stress on Caribbean Sea circulation. J. Geophys. Res, 101 , 16 44916 453.

    • Search Google Scholar
    • Export Citation
  • Yingshuo, S., and K. R. Thompson, 1997: Oscillating flow of a homogeneous fluid over an isolated topographic feature. Atmos.–Ocean, 35 , 229255.

    • Search Google Scholar
    • Export Citation
  • Zou, J., and G. Holloway, 1994: Entropy maximization tendency in topographic turbulence. J. Fluid Mech, 263 , 361374.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 184 180 2
PDF Downloads 30 28 1

Equilibrium Statistical Mechanics of Barotropic Flow over Finite Topography

View More View Less
  • 1 Institute of Ocean Sciences, Sidney, British Columbia, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Inviscid equilibria of barotropic flows over finite-amplitude topography are determined by means of statistical mechanics, extending previous quasigeostrophic theory. Imposing constraints of energy and enstrophy conservation leads to a linear relation between equilibrium mean potential vorticity and mean transport streamfunction. This relation is tested numerically and is found to hold over a wide range of topographic amplitudes. Implications for improving parameterizations of entropy generation by eddies are discussed.

Corresponding author address: William J. Merryfield, Institute of Ocean Sciences, P.O. Box 6000, 9860 West Saanich Road, Sidney, BC V8L 4B2, Canada.Email: merryfieldw@pac.dfo-mpo.gc.ca

Abstract

Inviscid equilibria of barotropic flows over finite-amplitude topography are determined by means of statistical mechanics, extending previous quasigeostrophic theory. Imposing constraints of energy and enstrophy conservation leads to a linear relation between equilibrium mean potential vorticity and mean transport streamfunction. This relation is tested numerically and is found to hold over a wide range of topographic amplitudes. Implications for improving parameterizations of entropy generation by eddies are discussed.

Corresponding author address: William J. Merryfield, Institute of Ocean Sciences, P.O. Box 6000, 9860 West Saanich Road, Sidney, BC V8L 4B2, Canada.Email: merryfieldw@pac.dfo-mpo.gc.ca

Save