• Allen, J. T., , and D. Smeed, 1996: Potential vorticity and vertical velocity at the Iceland–Færœs front. J. Phys. Oceanogr, 26 , 26112634.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., , and A. L. Gordon, 1996: Southern Ocean front from the Greenwich meridian to Tasmania. J. Geophys. Res, 101 , 36753696.

  • Best, S. E., , V. O. Ivchenko, , K. J. Richards, , R. D. Smith, , and R. C. Malone, 1999: Eddies in numerical models of the Antarctic Circumpolar Current and their influence on the mean flow. J. Phys. Oceanogr, 29 , 328350.

    • Search Google Scholar
    • Export Citation
  • Botnikov, V. N., 1963: Geographical position of the Antarctic Convergence zone in the Southern Ocean (in Russian). Sov. Antarct. Exped. Inf. Bull., Engl. transl, 4 , 324327.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , D. L. Witter, , and J. G. Richman, 1990:: Geosat altimeter observations of the surface circulation of the Southern Ocean. J. Geophys. Res, 95 , 17 87717 904.

    • Search Google Scholar
    • Export Citation
  • Deacon, G. E. R., 1982: Physical and biological zonation in the Southern Ocean. Deep-Sea Res, 29 , 115.

  • Dewar, W. K., , and J. C. Marshall, 1994: Inertial embedded fronts. J. Phys. Oceanogr, 24 , 7990.

  • Dijkstra, H. A., , and P. C. F. van der Vaart, 1998: On the physics of upgradient momentum transport in unstable eastward jets. Geophys. Astrophys. Fluid Dyn, 88 , 295325.

    • Search Google Scholar
    • Export Citation
  • Ertel, H., 1941: Ein neuer hydrodynamischer Wirbelsatz. Meteor. Z, 59 , 271281.

  • Fiekas, V., , H. Leach, , K. J. Mirbach, , and J. D. Woods, 1994: Mesoscale instability and upwelling. Part 1: Observations at the North Atlantic intergyre front. J. Phys. Oceanogr, 24 , 17501758.

    • Search Google Scholar
    • Export Citation
  • Follows, M. J., , and J. C. Marshall, 1994: Eddy driven exchange at ocean fronts. Ocean Modelling, (unpublished manuscripts). 102 , 59.

  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Gille, S. T., 1997: The Southern Ocean momentum balance: Evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr, 27 , 22192232.

    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., , and J. F. Read, 1998: Surface oceanic fronts between Africa and Antarctica. Deep-Sea Res, 45 , 217238.

  • Holton, J. R., 1978: An Introduction to Dynamic Meteorology. Academic Press, 511 pp.

  • Hoskins, B. J., 1975: The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci, 32 , 233242.

  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech, 14 , 131151.

  • Hoskins, B. J., , and I. Draghici, 1977: The forcing of ageostrophic motion according to the semi-geostrophic equations and in an isentropic coordinate model. J. Atmos. Sci, 34 , 18591867.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , I. Draghici, , and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc, 104 , 3138.

  • Hughes, C. W., , and P. D. Killworth, 1995: Effects of bottom topography in the large-scale circulation of the Southern Ocean. J. Phys. Oceanogr, 25 , 24852497.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., , M. S. Jones, , and S. Carnochan, 1998: Use of transient features to identify eastward currents in the Southern Ocean. J. Geophys. Res, 103 , 29292943.

    • Search Google Scholar
    • Export Citation
  • Inoue, M., 1985: Modal decomposition of the low-frequency currents and baroclinic instability at Drake Passage. J. Phys. Oceanogr, 15 , 11571181.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., , K. J. Richards, , and D. P. Stevens, 1996: The dynamics of the Antarctic Circumpolar Current. J. Phys. Oceanogr, 26 , 753774.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., , A. M. Treguier, , and S. E. Best, 1997: A kinetic energy budget and internal instabilities in the Fine Resolution Antarctic Model. J. Phys. Oceanogr, 27 , 522.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res, 36 , 3953.

  • Johnson, T. J., , R. H. Stewart, , C. K. Shum, , and B. D. Tapley, 1992: Distribution of Reynolds stress carried by mesoscale variability in the Antarctic Circumpolar Current. Geophys. Res. Lett, 19 , 13791382.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., 1995: Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides 1. Model description and results. J. Geophys. Res, 100 , 25 28325 308.

    • Search Google Scholar
    • Export Citation
  • Kazmin, A. S., , and M. M. Rienecker, 1996: Variability and frontogenesis in the large-scale oceanic frontal zones. J. Geophys. Res, 101 , 907921.

    • Search Google Scholar
    • Export Citation
  • Leach, H., 1987: The diagnosis of synoptic-scale vertical motion in the seasonal thermocline. Deep-Sea Res, 34 , 20052017.

  • Lee, M-M., , D. P. Marshall, , and R. G. Williams, 1997: On the eddy transfer of tracers: Advective or diffusive? J. Mar. Res, 3 , 483505.

    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., , and H. R. Valentine, 1984: Southern Ocean thermal fronts south of Africa. Deep-Sea Res, 31 , 14611475.

  • Lutjeharms, J. R. E., , and H. R. Valentine, 1988: Eddies at the sub-tropical convergence south of Africa. J. Phys. Oceanogr, 18 , 761774.

    • Search Google Scholar
    • Export Citation
  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res, 55 , 201222.

  • Marshall, D., , and S. Adcock, 1998: On the formation of inertial jets within the Antarctic Circumpolar Current. UK Oceanography '98 Programme and Abstracts, Challenger Society for Marine Science, p. 45.

    • Search Google Scholar
    • Export Citation
  • Marshall, D., , R. G. Williams, , and M-M. Lee, 1999: The relation between eddy-induced transport and isopycnic gradients of potential vorticity. J. Phys. Oceanogr, 29 , 15711578.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., , A. J. G. Nurser, , and R. G. Williams, 1993: Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr, 23 , 13151329.

    • Search Google Scholar
    • Export Citation
  • Morrow, R., , J. Church, , R. Coleman, , D. Chelton, , and N. White, 1992:: Eddy momentum flux and its contribution to the Southern Ocean momentum balance. Nature, 357 , 482484.

    • Search Google Scholar
    • Export Citation
  • Mosby, H., 1934: The waters of the Atlantic Antarctic Ocean. Sci. Results Norw. Antarct. Exped, 11 , 1131.

  • Naveira Garabato, A. C., 1999: On the physical controls of the biological uptake of CO2 in the Antarctic Circumpolar Current. Ph.D. dissertation, University of Liverpool, 201 pp.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., , V. H. Strass, , and G. Kattner, 2000: Fluxes of nutrients in a three-dimensional meander structure of the Antarctic Polar Front. Deep-Sea Res. II, in press.

    • Search Google Scholar
    • Export Citation
  • Nowlin, W. D. Jr, , and J. M. Klinck, 1986: The physics of the Antarctic Circumpolar Current. Rev. Geophys, 24 , 469491.

  • Nurser, A. J. G., , and J. C. Marshall, 1991: On the relationship between subduction rates and diabatic forcing of the mixed layer. J. Phys. Oceanogr, 21 , 17931802.

    • Search Google Scholar
    • Export Citation
  • Onken, R., , J. Fischer, , and J. D. Woods, 1990: Thermohaline fine-structure and its relation to frontogenesis dynamics. J. Phys. Oceanogr, 20 , 13791394.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., , T. Whitworth III, , and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res, 42 , 641673.

    • Search Google Scholar
    • Export Citation
  • Park, Y. H., , and L. Gambéroni, 1997: Cross-frontal exchange of Antarctic Intermediate Water and Antarctic Bottom Water in the Crozet Basin. Deep-Sea Res. II, 44 , 963986.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

  • Peterson, R. G., , and T. Whitworth III, 1989: The Subantarctic and Polar Fronts in relation to deep water masses through the southwestern Atlantic. J. Geophys. Res, 94 , 10 81710 838.

    • Search Google Scholar
    • Export Citation
  • Pinot, J-M., , J. Tintoré, , and D. P. Wang, 1996: A study of the omega equation for diagnosing vertical motions at ocean fronts. J. Mar. Res, 54 , 239259.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., , and L. A. Regier, 1992: Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr, 22 , 609625.

  • Rhines, P. B., 1975: Waves and turbulence on a β-plane. J. Fluid Mech, 69 , 417443.

  • Rhines, P. B., 1979: Geostrophic turbulence. Annu. Rev. Fluid Mech, 11 , 401441.

  • Rintoul, S. R., , J. R. Donguy, , and D. H. Roemmich, 1997: Seasonal evolution of upper ocean thermal structure between Tasmania and Antarctica. Deep-Sea Res, 44 , 11851202.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 1996: Intensive surveys of the Azores Front. 2: Inferring the geostrophic and vertical velocity fields. J. Geophys. Res, 101 , 16 29116 303.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, T., 1999: On discontinuities in the Sverdrup interior. J. Phys. Oceanogr, 29 , 24572461.

  • Shum, C. K., , R. A. Werner, , D. T. Sandwell, , B. H. Zhang, , R. S. Nerem, , and B. D. Tapley, 1990: Variations of global mesoscale eddy kinetic energy observed from Geostat. J. Geophys. Res, 95 , 17 86517 876.

    • Search Google Scholar
    • Export Citation
  • Sievers, H. A., , and W. D. Nowlin, 1984: The stratification and water masses at Drake Passage. J. Geophys. Res, 89 , 489514.

  • Sinha, B., , and K. J. Richards, 1999: Jet structure and scaling in Southern Ocean models. J. Phys. Oceanogr, 29 , 11431155.

  • Spall, M. A., 1995: Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. J. Geophys. Res, 100 , 25432557.

  • Spall, M. A., 1997: Baroclinic jets in a confluent flow. J. Phys. Oceanogr, 27 , 10541071.

  • Stevens, D. P., , and P. D. Killworth, 1992: The distribution of kinetic energy in the Southern Ocean. A comparison between observations and an eddy resolving general circulation model. Philos. Trans. Roy. Soc. London, 338B , 251257.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. P., , and V. D. Ivchenko, 1997: The zonal momentum balance in an eddy resolving general-circulation model of the Southern Ocean. Quart. J. Roy. Meteor. Soc, 123 , 929951.

    • Search Google Scholar
    • Export Citation
  • Strass, V. H., 1994: Mesoscale instability and upwelling. Part 2: Testing the diagnostics of vertical motion with a three-dimensional ocean front model. J. Phys. Oceanogr, 24 , 17591767.

    • Search Google Scholar
    • Export Citation
  • Strass, V. H., and Coauthors. 2000: Mesoscale dynamics: Shaping the environment of pelagic primary production at the Antarctic Polar Front. Deep-Sea Res. II, in press.

    • Search Google Scholar
    • Export Citation
  • Tintoré, J., , D. Gomis, , S. Alonso, , and G. Parrilla, 1991: Mesoscale dynamics and vertical motion in the Alborán Sea. J. Phys. Oceanogr, 21 , 811823.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., , and J. C. McWilliams, 1990: Topographic influence on wind-driven stratified flow in a β-plane channel: An idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr, 20 , 321343.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., , and R. L. Panetta, 1994: Multiple zonal jets in a quasigeostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr, 24 , 22632277.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., , and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr, 23 , 13461362.

    • Search Google Scholar
    • Export Citation
  • Viúdez, A., , R. L. Haney, , and J. Tintoré, 1996a: Circulation in the Alboran Sea as determined by quasi-synoptic hydrographic observations. Part II: Mesoscale ageostrophic motion diagnosed through density dynamical assimilation. J. Phys. Oceanogr, 26 , 706724.

    • Search Google Scholar
    • Export Citation
  • Viúdez, A., , J. Tintoré, , and R. L. Haney, 1996b: About the nature of the generalized omega equation. J. Atmos. Sci, 53 , 787795.

  • Viúdez, A., , J. Tintoré, , and R. L. Haney, 1996c: Circulation in the Alboran Sea as determined by quasi-synoptic hydrographic observations. Part I: Three-dimensional structure of the two anticyclonic gyres. J. Phys. Oceanogr, 26 , 684705.

    • Search Google Scholar
    • Export Citation
  • Wang, D. P., 1993: Model of frontogenesis: Subduction and upwelling. J. Mar. Res, 51 , 497513.

  • Whitworth, T. I. I. I., , and W. D. Nowlin Jr., 1987: Water masses and currents of the Southern Ocean at the Greenwich meridian. J. Geophys. Res, 92 , 64626476.

    • Search Google Scholar
    • Export Citation
  • Wilkin, J. L., , and R. A. Morrow, 1994: Eddy kinetic energy and momentum flux in the Southern Ocean: Comparison of a global eddy-resolving model with altimeter, drifter, and current-meter data. J. Geophys. Res, 99 , 79037916.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., , R. Onken, , and J. Fischer, 1986: Thermohaline intrusions created isopycnically at oceanic fronts are inclined to isopycnals. Nature, 322 , 440449.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 221 221 74
PDF Downloads 50 50 10

Mesoscale Subduction at the Antarctic Polar Front Driven by Baroclinic Instability

View More View Less
  • 1 Oceanography Laboratories, University of Liverpool, Liverpool, United Kingdom
  • | 2 George Deacon Division, Southampton Oceanography Centre, Southampton, United Kingdom
  • | 3 Alfred-Wegener-Institut für Polar und Meeresforschung, Bremerhaven, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A study of mesoscale subduction at the Antarctic Polar Front (PF) is conducted by use of hydrographic data from a high-resolution, quasi-synoptic survey of the front. The geostrophic velocity and isopycnal potential vorticity (PV) fields are computed, and the ageostrophic flow diagnosed from the semigeostrophic omega equation. It is found that the ageostrophic circulation induced by baroclinic instability counteracts the frontogenesis and frontolysis effected by the confluence and difluence, respectively, of the geostrophic velocity field. Though the sense of the ageostrophic circulation is reversed repeatedly along the front, the existence of PV gradients along isopycnals leads to a net cross-front “bolus” transport. In response to a reversal of this gradient with depth (a necessary condition for the onset of baroclinic instability), the bolus transport is northward at the protruding temperature minimum layer that characterizes the PF, and southward above. This net cross-front overturning circulation acts to flatten the isopycnals of the front and results in a subduction of the temperature minimum layer as it progresses northward along isopycnals. Consistently, a net baroclinic conversion rate of approximately 1 cm2 s−2 d−1, corresponding to a net subduction rate of O(20 m yr−1), is calculated in the survey area. The similarity between the PV field of the PF and other Southern Ocean fronts suggests that the authors' results may also be applicable there. This has profound implications for the understanding of the zonation of the Antarctic Circumpolar Current.

* Current affiliation: School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom.

Corresponding author address: Alberto C. Naveira Garabato, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom. Email: a.naveira-garabato@uea.ac.uk

Abstract

A study of mesoscale subduction at the Antarctic Polar Front (PF) is conducted by use of hydrographic data from a high-resolution, quasi-synoptic survey of the front. The geostrophic velocity and isopycnal potential vorticity (PV) fields are computed, and the ageostrophic flow diagnosed from the semigeostrophic omega equation. It is found that the ageostrophic circulation induced by baroclinic instability counteracts the frontogenesis and frontolysis effected by the confluence and difluence, respectively, of the geostrophic velocity field. Though the sense of the ageostrophic circulation is reversed repeatedly along the front, the existence of PV gradients along isopycnals leads to a net cross-front “bolus” transport. In response to a reversal of this gradient with depth (a necessary condition for the onset of baroclinic instability), the bolus transport is northward at the protruding temperature minimum layer that characterizes the PF, and southward above. This net cross-front overturning circulation acts to flatten the isopycnals of the front and results in a subduction of the temperature minimum layer as it progresses northward along isopycnals. Consistently, a net baroclinic conversion rate of approximately 1 cm2 s−2 d−1, corresponding to a net subduction rate of O(20 m yr−1), is calculated in the survey area. The similarity between the PV field of the PF and other Southern Ocean fronts suggests that the authors' results may also be applicable there. This has profound implications for the understanding of the zonation of the Antarctic Circumpolar Current.

* Current affiliation: School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom.

Corresponding author address: Alberto C. Naveira Garabato, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom. Email: a.naveira-garabato@uea.ac.uk

Save