• Allen, J. T., , and D. A. Smeed, 1996: Potential vorticity and vertical velocity at the Iceland–Færœs Front. J. Phys. Oceanogr, 26 , 26112634.

    • Search Google Scholar
    • Export Citation
  • Azov, Y., 1991: Eastern Mediterranean—A marine desert? Mar. Pollution Bull, 23 , 225232.

  • Bretherton, F. P., , R. E. Davis, , and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res, 23 , 559582.

    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., , R. Santoleri, , S. Marullo, , D. Iudicone, , and S. Zoffoli, 1999: Altimetric signal and three dimensional structure of the sea in the channel of Sicily. J. Geophys. Res, 104 , (C9). 2058520603.

    • Search Google Scholar
    • Export Citation
  • Carnevale, G. F., , S. G. Llewellyn Smith, , F. Crisciani, , R. Purini, , and R. Serravall, 1999: Bifurcation of a coastal current at an escarpement. J. Phys. Oceanogr, 29 , 969985.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 1994: Introduction to Geophysical Fluid Dynamics. Prentice-Hall, 320 pp.

  • Denman, K. L., , and A. E. Gargett, 1995: Biological–physical interactions in the upper ocean: The role of vertical and small scale transport processes. Annu. Rev. Fluid Mech, 27 , 225255.

    • Search Google Scholar
    • Export Citation
  • Falkowski, P. G., , D. Ziemann, , Z. Kolber, , and P. K. Bienfang, 1991:: Role of eddy pumping in enhancing primary production in the ocean. Nature, 352 , 5558.

    • Search Google Scholar
    • Export Citation
  • Grancini, G. F., , and A. Michelato, 1987: Current structure and variability in the Strait of Sicily and adjacent area. Ann. Geophys, 5B , 7588.

    • Search Google Scholar
    • Export Citation
  • Hansen, B., , and J. Meinke, 1979: Eddies and meanders in the Iceland–Færœs ridge area. Deep-Sea Res, 26 , 10671082.

  • Hoskins, B. J., , I. Draghici, , and H. C. Davis, 1978: A new look to the ω-equation. Quart. J. Roy. Meteor. Soc, 104 , 3138.

  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc, 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., , R. Santoleri, , S. Marullo, , and P. Gerosa, 1998: Sea level variability and surface eddy statistics in the Mediterranean Sea from TOPEX/POSEIDON data. J. Geophys. Res, 103 , (C2). 29953011.

    • Search Google Scholar
    • Export Citation
  • La Violette, P. E., , J. Tintoré, , and J. Font, 1990: The surface circulation of the Balearic Sea. J. Geophys. Res, 95 , (C2). 15591568.

    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., 1999: Estimation and study of mesoscale variability in the Strait of Sicily. Dyn. Atmos. Oceans, 29 , 255303.

  • Le Vourch, J., , C. Millot, , N. Castagne, , P. Le Borgne, , and J. P. Orly, 1992: Atlas of thermal fronts of the Mediterranean Sea derived from satellite imagery. Memories de l'Institut Oceanographique de Monaco, No. 16, 146 pp.

    • Search Google Scholar
    • Export Citation
  • Manzella, G. M. R., , G. P. Gasparini, , and M. Astraldi, 1988: Water exchange between the eastern and western Mediterranean through the Strait of Sicily. Deep-Sea Res, 35 , 10211035.

    • Search Google Scholar
    • Export Citation
  • Marullo, S., , R. Santoleri, , P. Malanotte Rizzoli, , and A. Bergamasco, 1999: The sea surface temperature field in the eastern Mediterranean from AVHRR data. Part I. Seasonal variability. J. Mar. Syst, 20 , 6381.

    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J. Jr, , and A. R. Robinson, 1997: Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res, 44 , 14271450.

    • Search Google Scholar
    • Export Citation
  • Millot, C., 1991: Mesoscale and seasonal variabilities of the circulation in the Western Mediterranean. Dyn. Atmos. Oceans, 15 , 179214.

    • Search Google Scholar
    • Export Citation
  • Moretti, M., , E. Sansone, , G. Spezie, , and A. De Maio, 1993: Results of investigations in the Sicily channel. Deep-Sea Res, 40 , 11811192.

    • Search Google Scholar
    • Export Citation
  • Paschini, E., , A. Artegiani, , and N. Pinardi, 1993: The mesoscale eddy field of the middle Adriatic Sea during fall 1988. Deep-Sea Res, 40 , 13651377.

    • Search Google Scholar
    • Export Citation
  • Piccioni, A., , M. Gabriele, , E. Salusti, , and E. Zambianchi, 1988: Wind induced upwelling off the southern coast of Sicily. Oceanol. Acta, 11 , 309314.

    • Search Google Scholar
    • Export Citation
  • Pinot, J-M., , J. Tintoré, , and D-P. Wang, 1996: A study of the omega equation for diagnosing vertical motions at ocean fronts. J. Mar. Res, 54 , 239259.

    • Search Google Scholar
    • Export Citation
  • Platt, T., 1985: Phytoplankton production in oligotrophic marine ecosystem: The Mediterranean sea. Mediterranean Marine Ecosystem, M. Moraitou-Apostolopoulou and V. Kiortsis, Eds., Plenum Press, 231–246.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., , and L. A. Regier, 1992: Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr, 22 , 609625.

  • Pollard, R. T., , P. B. Rhines, , and R. O. R. Y. Thompson, 1973: The deepening of the wind mixed layer. Geophys. Fluid Dyn, 3 , 381404.

  • Robinson, A. R., , A. Hecht, , N. Pinardi, , J. Bishop, , W. G. Leslie, , Z. Rosentroub, , A. J. Mariano, , and S. Brenner, 1987: Small synoptic/mesoscale eddies and energetic variability of the eastern Levantine Basin. Nature, 327 , 131134.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., , M. A. Spall, , and N. Pinardi, 1988: Gulf Stream simulations and the dynamics of ring and meander processes. J. Phys. Oceanogr, 18 , 18111853.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., , J. Sellschopp, , A. Warn-Varnas, , W. G. Leslie, , C. J. Lozano, , P. J. Haley, , L. A. Anderson, , and P. F. J. Lermusiaux, 1999: The Atlantic Ionian stream. J. Mar. Res, 20 , 129156.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 1996: Intensive surveys of the Azores front. 2: Inferring the geostrophic and vertical velocity fields. J. Geophys. Res, 101 , (C7). 1629116303.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., , and D. C. Chapman, 1995: Evolution of the instability of a mixed-layer front. J. Geophys. Res, 100 , (C4). 67436759.

  • Spall, M. A., 1995: Frontogenesis, subduction and cross-front exchange at upper ocean fronts. J. Geophys. Res, 100 , (C3). 25432557.

  • Spall, M. A., , and D. C. Chapman, 1998: On the efficiency of baroclinic eddy heat transport across narrow fronts. J. Phys. Oceanogr, 28 , 22752287.

    • Search Google Scholar
    • Export Citation
  • Strass, V. H., 1992: Chlorophyll patchiness caused by mesoscale upwellings at fronts. Deep-Sea Res, 39 , 7596.

  • Tintoré, J., , D. Gomis, , S. Alonso, , and G. Parrilla, 1991: Mesoscale dynamics and vertical motion in the Alboran Sea. J. Phys. Oceanogr, 21 , 811823.

    • Search Google Scholar
    • Export Citation
  • Tozzi, S., , B. Buongiorno Nardelli, , and F. D'Ortenzio, 1997: Distribution of chlorophyll a in the eastern Mediterranean in relation to sub-basin structures: Analysis of the remotely sensed data. Proc. Atti 12th Congresso AIOL, Vol. 1, Genoa, Italy, Associazione Italinana di Oceanologia e Limnologia, 213–224.

    • Search Google Scholar
    • Export Citation
  • Tsimplis, M. N., , R. Proctor, , and R. A. Flather, 1995: A two-dimensional tidal model for the Mediterranean Sea. J. Geophys. Res, 100 , 16 22316 239.

    • Search Google Scholar
    • Export Citation
  • Viúdez, A., , J. Tintoré, , and R. L. Haney, 1996a: Circulation in the Alboran Sea as determined by quasi-synoptic hydrographic observations. Part I: Three-dimensional structure of the two anticyclonic gyres. J. Phys. Oceanogr, 26 , 684705.

    • Search Google Scholar
    • Export Citation
  • Viúdez, A., , R. L. Haney, , and J. Tintoré, 1996b: Circulation in the Alboran Sea as determined by quasi-synoptic hydrographic observations. Part II: Mesoscale ageostrophic motion diagnosed through density dynamical assimilation. J. Phys. Oceanogr, 26 , 706724.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , and M. Ikeda, 1997: Diagnosing ocean unstable baroclinic waves and meanders using the quasigeostrophic equations and Q-vector method. J. Phys. Oceanogr, 27 , 11581172.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., 1985: The physics of thermocline ventilation. Coupled Ocean–Atmosphere Models, J. C. J. Nihoul, Ed., Elsevier, 767 pp.

  • Zakardjian, B., , and L. Prieur, 1998: Biological and chemical signs of upward motions in permanent geostrophic fronts of the Western Mediterranean. J. Geophys. Res, 103 , (C12). 2784927866.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 184 184 29
PDF Downloads 32 32 0

Small Mesoscale Features at a Meandering Upper-Ocean Front in the Western Ionian Sea (Mediterranean Sea): Vertical Motion and Potential Vorticity Analysis

View More View Less
  • 1 CNR, Istituto di Fisica dell'Atmosfera, and ENEA, Centro Ricerche Casaccia, Rome, Italy
  • | 2 CNR, Istituto di Fisica dell'Atmosfera, Rome, Italy
  • | 3 CNR, Istituto Talassografico di Trieste, Trieste, Italy
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Transient mesoscale and submesoscale processes, such as small eddies and filaments, could play a fundamental role in the marine ecosystem, especially in oligotrophic seas like the Mediterranean. However, very little is known about the biological and physical dynamics characterizing such structures. In this work, the 8-km horizontal resolution data collected during the SYMPLEX 1998 survey are analyzed to describe the physical dynamics of small mesoscale features along the Atlantic–Ionian stream (western Ionian Sea). The data were optimally interpolated over a regular grid and used to compute the 3D ageostrophic circulation by solution of the Q-vector formulation of the omega equation. The relative importance of stratification, relative vorticity, and twisting terms in the Rossby–Ertel potential vorticity is thus examined along selected isopycnals, together with the associated vertical motions and vortex stretching. A surface cyclonic eddy ∼15 km of radius was observed near a meander of the Atlantic–Ionian stream. This small cyclone is characterized by high potential vorticity values similar to that of the meander, by a relative vorticity of 0.5f, and by vertical velocities of the order of 10–14 m d−1. A subduction process of ∼15 m d−1 was found in correspondence of the meander trough, giving rise to a deep cold anticyclone, while peak upward velocities reached the same order of magnitude at the trough.

Corresponding author address: Bruno Buongiorno Nardelli, CNR, Istituto di Fisica dell'Atmosfera, Area di ricerca di Tor Vergata, Via del fosso del Cavaliere 100, 00133 Rome, Italy. Email: bruno@ekman.ifa.rm.cnr.it

Abstract

Transient mesoscale and submesoscale processes, such as small eddies and filaments, could play a fundamental role in the marine ecosystem, especially in oligotrophic seas like the Mediterranean. However, very little is known about the biological and physical dynamics characterizing such structures. In this work, the 8-km horizontal resolution data collected during the SYMPLEX 1998 survey are analyzed to describe the physical dynamics of small mesoscale features along the Atlantic–Ionian stream (western Ionian Sea). The data were optimally interpolated over a regular grid and used to compute the 3D ageostrophic circulation by solution of the Q-vector formulation of the omega equation. The relative importance of stratification, relative vorticity, and twisting terms in the Rossby–Ertel potential vorticity is thus examined along selected isopycnals, together with the associated vertical motions and vortex stretching. A surface cyclonic eddy ∼15 km of radius was observed near a meander of the Atlantic–Ionian stream. This small cyclone is characterized by high potential vorticity values similar to that of the meander, by a relative vorticity of 0.5f, and by vertical velocities of the order of 10–14 m d−1. A subduction process of ∼15 m d−1 was found in correspondence of the meander trough, giving rise to a deep cold anticyclone, while peak upward velocities reached the same order of magnitude at the trough.

Corresponding author address: Bruno Buongiorno Nardelli, CNR, Istituto di Fisica dell'Atmosfera, Area di ricerca di Tor Vergata, Via del fosso del Cavaliere 100, 00133 Rome, Italy. Email: bruno@ekman.ifa.rm.cnr.it

Save