• Aagaard, K., 1989: A synthesis of the Arctic Ocean circulation. P.-V. Reun. Cons. Int. Explor. Mer, 188 , 1122.

  • Aagaard, K., , and P. Greisman, 1975: Toward new mass and heat budgets for the Arctic mediterranean seas. J. Geophys. Res, 80 , 38213827.

    • Search Google Scholar
    • Export Citation
  • Aagaard, K., , and E. Carmack, 1994: The Arctic Ocean and climate: A perspective. The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume, O. M. Johannessen, R. D. Muench, and J. E. Overland, Eds., Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 5–20.

    • Search Google Scholar
    • Export Citation
  • Aagaard, K., , E. Fahrbach, , J. Meincke, , and J. H. Swift, 1991: Saline outflow from the Arctic Ocean: Its contribution to the deep waters of the Greenland, Norwegian, and Iceland Seas. J. Geophys. Res, 96 , 20 43320 441.

    • Search Google Scholar
    • Export Citation
  • Alvarez, A., , J. Tinoré, , G. Holloway, , M. Elby, , and J. M. Beckers, 1994: Effect of topographic stress on circulation in the western Mediterranean. J. Geophys. Res, 99 , 16 05316 064.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal model. J. Phys. Oceanogr, 15 , 10601075.

    • Search Google Scholar
    • Export Citation
  • Cummins, P., , and G. Holloway, 1994: On eddy–topographic stress representation. J. Phys. Oceanogr, 24 , 700706.

  • Eby, M., , and G. Holloway, 1994: Sensitivity of a large-scale ocean model to a parameterization of topographic stress. J. Phys. Oceanogr, 24 , 25772588.

    • Search Google Scholar
    • Export Citation
  • England, M. H., , and G. Holloway, 1998: Simulations of CFC-11 outflow and seawater age in the deep North Atlantic. J. Geophys. Res, 103 , 15 88515 901.

    • Search Google Scholar
    • Export Citation
  • Foreman, M. G. G., , W. R. Crawford, , and R. F. Mardsen, 1995: De-tiding: Theory and practice. Quantitative Skill Assessment for Coastal Ocean Models, Vol. 47, Coastal and Estuarine Studies, Amer. Geophys. Union, 203–239.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr, 20 , 150155.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gorshkov, S. G., 1980: Atlas of Oceans. Arctic Ocean (in Russian). Military Defense Publishing House, Moscow, 199 pp.

  • Green, J. S., 1970: Transfer properties of the larger-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc, 96 , 157185.

    • Search Google Scholar
    • Export Citation
  • Hanzlick, D. J., 1983: The West Spitsbergen Current: Transport, forcing and variability. Ph.D. thesis, University of Washington, Seattle, WA.

    • Search Google Scholar
    • Export Citation
  • Heinze, C., , P. Schlosser, , K. P. Koltermann, , and J. Meincke, 1990: A tracer study of the deep water renewal in the European polar seas. Deep-Sea Res, 37 , 14251453.

    • Search Google Scholar
    • Export Citation
  • Hendershott, M. C., 1977: Numerical models of ocean tides. The Sea. Vol. 6: Marine Modeling, E. D. Goldberg, Ed., Wiley-Interscience, 47–96.

    • Search Google Scholar
    • Export Citation
  • Holland, D. M., , L. A. Mysak, , and J. M. Oberhuber, 1996: An investigation of the general circulation of the Arctic Ocean using an isopycnal model. Tellus, 48A , 138157.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1992: Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr, 22 , 10331046.

  • Holloway, G., , T. Sou, , and M. Eby, 1995: Dynamics of circulation of the Japan Sea. J. Mar. Res, 53 , 539569.

  • Hoyer, J-M., , and R. Sadourny, 1982: Closure modeling of fully developed baroclinic instability. J. Atmos. Sci, 39 , 707721.

  • Kamenkovich, V. M., , M. N. Koshlyakov, , and A. S. Monin, 1986: Synoptic Eddies in the Ocean. Dordrecht, 433 pp.

  • Kazantsev, E., , J. Sommeria, , and J. Verron, 1998: Subgrid-scale eddy parameterization by statistical mechanics in a barotropic ocean model. J. Phys. Oceanogr, 28 , 10171042.

    • Search Google Scholar
    • Export Citation
  • Kowalik, Z., 1981: A study of the M2 tide in the ice-covered Arctic Ocean. Model. Identif. Control, 2 (4) 201223.

  • Kowalik, Z., , and A. Yu. Proshutinsky, 1994: The Arctic Ocean tides. The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume, O. M. Johannessen, R. D. Muench, and J. E. Overland, Eds., Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 137–158.

    • Search Google Scholar
    • Export Citation
  • Kowalik, Z., , and I. Polyakov, 1999: Diurnal tides over Kashevarov Bank, Okhotsk Sea. J. Geophys. Res, 104 , 53615380.

  • Kuz'min, G. A., 1982: Statistical mechanics of the organization into two-dimensional coherent structures. Structural Turbulence, M. A. Goldshtik, Ed., Institute of Thermophysics, Acad. Nauk SSSR, Novosibirsk, 103–114.

    • Search Google Scholar
    • Export Citation
  • Larichev, V. D., , and I. M. Held, 1995: Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr, 25 , 22852297.

    • Search Google Scholar
    • Export Citation
  • Maslowski, W., , B. Newton, , P. Schlosser, , A. Semtner, , and D. Martinson, 2000: Modeling recent climate variability in the Arctic Ocean. Geophys. Res. Lett, 27 , 37433746.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, F. A., , E. C. Carmack, , R. W. MacDonald, , and J. K. B. Bishop, 1996: Physical and geochemical properties across the Atlantic/Pacific water mass front in the southern Canadian Basin. J. Geophys. Res, 101 , 11831197.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and S. Häkkinen, 1994: A review of coupled ice–ocean models. The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume, O. M. Johannessen, R. D. Muench, and J. E. Overland, Eds., Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 21–31.

    • Search Google Scholar
    • Export Citation
  • Miller, J., 1990: Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett, 65 , 21372140.

  • National Center for Atmospheric Research, 1990: Compact disk of the National Meteorological Center Grid Point Data Set: Version II. General information and user's guide. NCAR, 9 pp.

    • Search Google Scholar
    • Export Citation
  • Nazarenko, L., , G. Holloway, , and N. Tausnev, 1998: Dynamics of transport of “Atlantic signature” in the Arctic Ocean. J. Geophys. Res, 103 , 31 00331 0015.

    • Search Google Scholar
    • Export Citation
  • Nikiforov, Ye G., , and A. O. Shpaikher, 1980: Features of the Formation of Hydrological Regime Large-Scale Variations in the Arctic Ocean (in Russian). Gydrometeoizdat, Leningrad, 269 pp.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer Verlag, 624 pp.

  • Polyakov, I. V., , and L. A. Timokhov, 1994: Mean fields of temperature and salinity of the Arctic Ocean. Russ. Meteor. Hydrol, 7 , 3338.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., , I. Yu. Kulakov, , S. A. Kolesov, , N. Eu. Dmitriev, , R. S. Pritchard, , D. Driver, , and A. K. Naumov, 1998: Coupled sea ice–ocean model of the Arctic Ocean. J. Offshore Mech. Arctic Eng, 120 , 7784.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., , A. Yu. Proshutinsky, , and M. A. Johnson, 1999: Seasonal cycles in two regimes of Arctic climate. J. Geophys. Res, 104 , (C11). 2576125788.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1977: The dynamics of unsteady currents. The Sea, Vol. 6: E. A. Goldberg, Ed., Marine Modeling, Wiley, 189–318.

  • Robert, P., , and C. Rosier, 1997: The modeling of small scales in two-dimensional turbulent flows: A statistical mechanics approach. J. Stat. Phys, 86 , 481515.

    • Search Google Scholar
    • Export Citation
  • Robert, R., , and J. Sommeria, 1991: Statistical equilibrium states for two-dimensional flows. J. Fluid Mech, 229 , 291310.

  • Robert, R., , and J. Sommeria, 1992: Relaxation towards a statistical equilibrium state in two-dimensional perfect fluid dynamics. Phys. Rev. Lett, 69 , 27762779.

    • Search Google Scholar
    • Export Citation
  • Romanov, I. P., 1992: The Ice Cover of the Arctic Basin (in Russian). Arctic and Antarctic Research Institute, St. Petersburg, 211 pp.

  • Rudels, B., 1987: On the mass balance of the polar ocean with special emphasis on the Fram Strait. Skr. Nor. Polarinst, 188 , 153.

  • Rudels, B., , E. P. Jones, , L. G. Anderson, , and G. Kattner, 1994: On the intermediate depth waters of the Arctic Ocean. The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume, O. M. Johannessen, R. D. Muench, and J. E. Overland, Eds., Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 33–46.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1978: Two-layer quasi-geostrophic turbulence in a simple special case. Geophys. Astrophys. Fluid Dyn, 10 , 2552.

  • Salmon, R., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn, 15 , 167211.

  • Schwiderski, E. W., 1979: Global Ocean Tides, Part II: The Semidiurnal Principal Lunar tide (M2). Atlas of Tidal Charts and Maps. Naval Surface Warfare Center, Dahlgren Division, 87 pp.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., 1987: A numerical study of sea ice and ocean circulation in the Arctic. J. Phys. Oceanogr, 17 , 10771099.

  • Shpaikher, A. O., 1973: Atlantic and Pacific waters as Arctic Ocean climatic factors. Heat Melioration at Northern Latitudes (in Russian), Nauka, Moscow, 52–77.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev, 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Sommeria, J., 1998: Statistical mechanics of potential vorticity for parameterizing mesoscale eddies. Ocean Modeling and Parameterization, E. P. Chassignet and J. Verron, Eds., Kluwer Academic, 303–326.

    • Search Google Scholar
    • Export Citation
  • Sou, T., , G. Holloway, , and M. Eby, 1996: Effects of topographic stress on Caribbean Sea circulation. J. Geophys. Res, 101 , 16 44916 453.

    • Search Google Scholar
    • Export Citation
  • Stone, P., 1972: A simplified radiative-dynamical model for the static stability of rotating atmosphere. J. Atmos. Sci, 29 , 405418.

  • Visbeck, M., , J. Marshall, , T. Haine, , and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr, 27 , 381402.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , W. D. Hibler III, , M. Steele, , and D. A. Rothrock, 1998: Arctic ice–ocean modeling with and without climate restoring. J. Phys. Oceanogr, 28 , 191217.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 194 194 11
PDF Downloads 61 61 10

An Eddy Parameterization Based on Maximum Entropy Production with Application to Modeling of the Arctic Ocean Circulation

View More View Less
  • 1 Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey and International Arctic Research Center, University of Alaska, Fairbanks, Fairbanks, Alaska
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

An eddy parameterization derived from statistical mechanics of potential vorticity is applied for inviscid shallow-water equations. The solution of a variational problem based on the maximum entropy production (MEP) principle provides, with some physical constraints, several viscous terms. Along with the traditional Laplacian operator, MEP parameterization includes the “Neptune effect,” which is similar to that described by Holloway. The Neptune effect describes the interaction of eddies with seafloor topography.

MEP parameterization is then incorporated into a high-resolution tidal model of the Arctic Ocean. MEP viscosity does not substantially affect the distribution of amplitudes, phases, and tidal currents; however, residual tidal circulation is sensitive to employed parameterization in areas of maximum bottom slope. The Neptune effect is the main contributor among other viscosities. The combined effect of the new viscous terms and nonlinear terms results in cyclonic residual tidal circulation. The MEP viscosity is also used in a coarse, 55.56-km-resolution Arctic Ocean general circulation model. The model produces cyclonic subsurface circulation in major arctic basins. This pattern is supported by observational studies. The model maintains the proper level of water transport through narrow (relative to the model resolution) Fram Strait, conserving the heat content in the Arctic interior.

Corresponding author address: Igor Polyakov, International Arctic Research Center, University of Alaska, Fairbanks, P.O. Box 757335, Fairbanks, AK 99775. Email: igor@iarc.uaf.edu

Abstract

An eddy parameterization derived from statistical mechanics of potential vorticity is applied for inviscid shallow-water equations. The solution of a variational problem based on the maximum entropy production (MEP) principle provides, with some physical constraints, several viscous terms. Along with the traditional Laplacian operator, MEP parameterization includes the “Neptune effect,” which is similar to that described by Holloway. The Neptune effect describes the interaction of eddies with seafloor topography.

MEP parameterization is then incorporated into a high-resolution tidal model of the Arctic Ocean. MEP viscosity does not substantially affect the distribution of amplitudes, phases, and tidal currents; however, residual tidal circulation is sensitive to employed parameterization in areas of maximum bottom slope. The Neptune effect is the main contributor among other viscosities. The combined effect of the new viscous terms and nonlinear terms results in cyclonic residual tidal circulation. The MEP viscosity is also used in a coarse, 55.56-km-resolution Arctic Ocean general circulation model. The model produces cyclonic subsurface circulation in major arctic basins. This pattern is supported by observational studies. The model maintains the proper level of water transport through narrow (relative to the model resolution) Fram Strait, conserving the heat content in the Arctic interior.

Corresponding author address: Igor Polyakov, International Arctic Research Center, University of Alaska, Fairbanks, P.O. Box 757335, Fairbanks, AK 99775. Email: igor@iarc.uaf.edu

Save