• Baturin, N. G., and P. P. Niiler, 1997: Effects of instability waves in the mixed layer of the equatorial Pacific. J. Geophys. Res., 102 , 2777127793.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., C. W. Böning, C. Köberle, and J. Willebrand, 1994: Effects of increased horizontal resolution in a simulation of the North Atlantic Ocean. J. Phys. Oceanogr., 24 , 326344.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., and M. D. Cox, 1988: Particle dispersion and mixing of conservative properties in an eddy-resolving model. J. Phys. Oceanogr., 18 , 320338.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., W. R. Holland, F. O. Bryan, G. Danabasoglu, and J. C. McWilliams, 1995: An overlooked problem in model simulations of the thermohaline circulation and heat transport in the Atlantic Ocean. J. Climate, 8 , 515523.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., and N. G. Hogg, 1996: Structure of the Gulf Stream and its recirculations at 55°W. J. Phys. Oceanogr., 26 , 10021022.

  • Bryden, H. L., 1979: Poleward heat flux and conversion of available potential energy in Drake Passage. J. Mar. Res., 37 , 122.

  • Bryden, H. L., 1982: Sources of eddy energy in the Gulf-Stream recirculation region. J. Mar. Res., 40 , 10471068.

  • Bryden, H. L., and R. A. Heath, 1985: Energetic eddies at the northern edge of the Antarctic Circumpolar Current in the southwest Pacific. Progress in Oceanography, Vol. 14, Pergamon, 65–87.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and E. C. Brady, 1989: Eddy momentum and heat fluxes and their effects on the circulation of the equatorial Pacific Ocean. J. Mar. Res., 47 , 5579.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., F. J. Wentz, C. L. Gentemann, R. A. de Szoeke, and M. G. Schlax, 2000: Satellite microwave SST observations of transequatorial tropical instability waves. Geophys. Res. Lett., 27 , 12391242.

    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1980: Generation and propagation of 30-day waves in a numerical model of the Pacific. J. Phys. Oceanogr., 10 , 11681186.

  • Cox, M. D., 1985: An eddy-resolving numerical model of the ventilated thermocline. J. Phys. Oceanogr., 15 , 13121324.

  • Cronin, M., and D. R. Watts, 1996: Eddy-mean flow interaction in the Gulf Stream at 68°W. Part I: Eddy energetics. J. Phys. Oceanogr., 26 , 21072131.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., J. C. McWilliams, and P. R. Gent, 1994: The role of mesoscale tracer transports in the global ocean circulation. Science, 264 , 11231126.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., and M. D. Levine, 1981: The advective flux of heat by mean geostrophic motions in the Southern Ocean. Deep-Sea Res., 28A , 10571085.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gordon, A. L., and W. B. Owens, 1987: Polar oceans. Rev. Geophys., 25 , 227233.

  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96 , 157185.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28 , 831841.

  • Hall, M. M., and H. L. Bryden, 1982: Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res., 29 , 339359.

  • Hansen, D. V., and C. A. Paul, 1984: Genesis and effects of long waves in the equatorial Pacific. J. Geophys. Res., 89 , 1043110440.

  • Hogan, P. J., and H. E. Hurlburt, 2000: Impact of upper ocean–topographical coupling and isopycnal outcropping in Japan/East Sea models with ⅛° to ° resolution. J. Phys. Oceanogr., 30 , 25352561.

    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 1994: Observations of Gulf Stream meander-induced disturbances. J. Phys. Oceanogr., 24 , 25342545.

  • Holloway, G., 1992: Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr., 22 , 10331046.

  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39 , 385411.

  • Kushner, P. J., and I. M. Held, 1998: A test, using atmospheric data, of a method for estimating oceanic eddy diffusivity. Geophys. Res. Lett., 25 , 42134216.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and J. Marotzke, 1998: Seasonal cycles of meridional overturning and heat transport of the Indian Ocean. J. Phys. Oceanogr., 28 , 923943.

    • Search Google Scholar
    • Export Citation
  • Legeckis, R., 1977: Long waves in the eastern equatorial Pacific Ocean: A view from a geostationary satellite. Science, 197 , 11791181.

    • Search Google Scholar
    • Export Citation
  • Legeckis, R., and G. Reverdin, 1987: Long waves in the equatorial Atlantic Ocean during 1983. J. Geophys. Res., 92 , 28352842.

  • Legeckis, R., W. Pichel, and G. Nesterczuk, 1983: Equatorial long waves in geostationary satellite observations and in a multichannel sea surface temperature analysis. Bull. Amer. Meteor. Soc., 64 , 133139.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Macdonald, A. M., and C. Wunsch, 1996: An estimate of global ocean circulation and heat fluxes. Nature, 382 , 436439.

  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11 , 16771680.

  • McCann, M. P., A. J. Semtner, and R. M. Chervin, 1994: Transports and budgets of volume, heat, and salt from a global eddy-resolving ocean model. Climate Dyn., 10 , 5980.

    • Search Google Scholar
    • Export Citation
  • McClean, J. L., A. J. Semtner, and V. Zlotnicki, 1997: Comparisons of mesoscale variability in the Semtner–Chervin ¼° model, the Los Alamos Parallel Ocean Program ⅙° model, and TOPEX/POSEIDON data. J. Geophys. Res., 102 , 2520325226.

    • Search Google Scholar
    • Export Citation
  • Nowlin, W. D., S. J. Worley, and T. Whitworth, 1985: Methods for making point estimates of eddy heat flux as applied to the Antarctic Circumpolar Current. J. Geophys. Res., 90 , 33053324.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., and R. C. Pacanowski, 1986: The mass and heat budget in a model of the tropical Atlantic Ocean. J. Geophys. Res., 91 , 1421214220.

    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and S. E. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30 , 30503076.

    • Search Google Scholar
    • Export Citation
  • Qiao, L., and R. H. Weisberg, 1995: Tropical instability wave kinematics: Observations from the Tropical Instability Wave Experiment. J. Geophys. Res., 100 , 86778693.

    • Search Google Scholar
    • Export Citation
  • Rix, N. H., and J. Willebrand, 1996: Parameterization of mesoscale eddies as inferred from a high-resolution circulation model. J. Phys. Oceanogr., 26 , 22812285.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., 1987: On the energetics of the Gulf Stream at 73W. J. Mar. Res., 45 , 5982.

  • Semtner, A. J., and W. R. Holland, 1980: Numerical simulation of equatorial ocean circulation. Part I: A basic case in turbulent equilibrium. J. Phys. Oceanogr., 10 , 667693.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., and R. M. Chervin, 1992: Ocean general circulation from a global eddy-resolving model. J. Geophys. Res., 97 , 54935550.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at °. J. Phys. Oceanogr., 30 , 15321561.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28 , 727739.

  • Stammer, D., R. Tokmakian, A. J. Semtner, and C. Wunsch, 1996: How well does a ¼° global circulation model simulate large-scale oceanic observations? J. Geophys. Res., 101 , 2577925811.

    • Search Google Scholar
    • Export Citation
  • Thompson, S. R., 1993: Estimation of the transport of heat in the Southern Ocean using a fine-resolution numerical model. J. Phys. Oceanogr., 23 , 24932497.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. A. Spall, 1997: On the specification of eddy transfer coefficients in coarse resolution ocean circulation models. J. Phys. Oceanogr., 27 , 381402.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1999: Approximating the energy transport across oceanic sections. J. Geophys. Res., 104 , 79157919.

  • Wunsch, C., 1999: Where do ocean eddy heat fluxes matter? J. Geophys. Res., 104 , 1323513249.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 19
PDF Downloads 18 18 18

The Oceanic Eddy Heat Transport

View More View Less
  • 1 Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 School of Ocean and Earth Science, Southampton Oceanography Centre, Southampton, United Kingdom
Restricted access

Abstract

The rectified eddy heat transport is calculated from a global high-resolution ocean general circulation model. The eddy heat transport is found to be strong in the western boundary currents, the Antarctic Circumpolar Current, and the equatorial region. It is generally weak in the central gyres. It is also found to be largely confined to the upper 1000 m of the ocean model. The eddy heat transport is separated into its rotational and divergent components. The rotational component of the eddy heat transport is strong in the western boundary currents, while the divergent component is strongest in the equatorial region and Antarctic Circumpolar Current. In the equatorial region, the eddy heat transport is due to tropical instability waves, while in the western boundary currents and the Antarctic Circumpolar Current the large eddy heat transports arise from the meandering of the currents. Stammer's method for estimating the eddy heat transport from an eddy diffusivity derived from mixing length arguments, using altimetry data and the climatological temperature field, is tested and fails to reproduce the model's directly evaluated eddy heat transport in the equatorial regions, and possible reasons for the discrepancy are explored. However, in the Antarctic Circumpolar Current region and to a lesser extent in the western boundary currents, the model's eddy heat transport is shown to have some qualitative agreement with his estimate.

Corresponding author address: Dr. Steven R. Jayne, Department of Physical Oceanography, Woods Hole Oceanographic Institution, MS 21, 360 Woods Hole Road, Woods Hole, MA 02543-1541. Email: surje@alum.mit.edu

Abstract

The rectified eddy heat transport is calculated from a global high-resolution ocean general circulation model. The eddy heat transport is found to be strong in the western boundary currents, the Antarctic Circumpolar Current, and the equatorial region. It is generally weak in the central gyres. It is also found to be largely confined to the upper 1000 m of the ocean model. The eddy heat transport is separated into its rotational and divergent components. The rotational component of the eddy heat transport is strong in the western boundary currents, while the divergent component is strongest in the equatorial region and Antarctic Circumpolar Current. In the equatorial region, the eddy heat transport is due to tropical instability waves, while in the western boundary currents and the Antarctic Circumpolar Current the large eddy heat transports arise from the meandering of the currents. Stammer's method for estimating the eddy heat transport from an eddy diffusivity derived from mixing length arguments, using altimetry data and the climatological temperature field, is tested and fails to reproduce the model's directly evaluated eddy heat transport in the equatorial regions, and possible reasons for the discrepancy are explored. However, in the Antarctic Circumpolar Current region and to a lesser extent in the western boundary currents, the model's eddy heat transport is shown to have some qualitative agreement with his estimate.

Corresponding author address: Dr. Steven R. Jayne, Department of Physical Oceanography, Woods Hole Oceanographic Institution, MS 21, 360 Woods Hole Road, Woods Hole, MA 02543-1541. Email: surje@alum.mit.edu

Save