Abstract
The physical mechanisms of transient amplification of initial perturbations to the thermohaline circulation (THC), and of the optimal stochastic forcing of THC variability, are discussed using a simple meridional box model. Two distinct mechanisms of transient amplification are found. One such mechanism, with a transient amplification timescale of a couple of years, involves an interaction between the THC induced by rapidly decaying sea surface temperature anomalies and the THC induced by the slower-decaying salinity mode. The second mechanism of transient amplification involves an interaction between different slowly decaying salinity modes and has a typical growth timescale of decades. The optimal stochastic atmospheric forcing of heat and freshwater fluxes are calculated as well. It is shown that the optimal forcing induces low-frequency THC variability by exciting the salinity-dominated variability modes of the THC.
Corresponding author address: Dr. Eli Tziperman, Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel. Email: eli@beach.weizmann.ac.il