• Adamec, D., R. L. Elsberry, R. W. Garwood, and R. L. Haney, 1981: An embedded mixed-layer ocean circulation model. Dyn. Atmos. Oceans, 6 , 6996.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25 , 122137.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., J. D. Scott, and C. Deser, 2000: Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J. Geophys. Res., 105 , 1682316842.

    • Search Google Scholar
    • Export Citation
  • Antonov, J., S. Levitus, T. P. Boyer, M. Conkright, C. O'Brien, and T. D. Stephens, 1998: Temperature of the Atlantic Ocean. Vol. 1, World Ocean Atlas 1998, NOAA Atlas NESDIS 27, 166 pp.

    • Search Google Scholar
    • Export Citation
  • Auad, G., A. J. Miller, and W. B. White, 1998: Simulation of heat storages and associated heat budgets in the Pacific Ocean, Part 1: El Niño–Southern Oscillation timescale. J. Geophys. Res., 103 , 2760327620.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., U. S. Bhat, and M. A. Alexander, 1995: A modeling study of the interannual variability in the wintertime North Atlantic Ocean. J. Climate, 8 , 30673083.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., and W. T. Liu, 1982: An operational large-scale marine planetary boundary layer model. J. Appl. Meteor., 21 , 261269.

  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22 , 859881.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., and G. R. Ierley, 1995: Symmetry-breaking multiple equilibria in quasigeostrophic, wind-driven flows. J. Phys. Oceanogr., 25 , 11961205.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1994: The resolution capability of an irregularly sampled dataset: With application to Geosat altimeter data. J. Atmos. Oceanic Technol., 11 , 534550.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current extension from the 1970s to the 1980s. J. Climate, 12 , 16971706.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmosphere Couple Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes. Rev. Geophys., 23 , 357390.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Müller, and E. Zorita, 1997: A simple model for the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27 , 15331546.

    • Search Google Scholar
    • Export Citation
  • Gaspar, P., 1988: Modeling the seasonal cycle of the upper ocean. J. Phys. Oceanogr., 18 , 161180.

  • Jin, F-F., 1997: A theory of interdecadal climate variability of the North Pacific ocean–atmosphere system. J. Climate, 10 , 18211835.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kelly, K. A., and S. T. Gille, 1990: Gulf Stream surface transport and statistics at 69°W from Geosat altimeter. J. Geophys. Res., 95 , 31463161.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., and B. Qiu, 1995a: Heat flux estimates for the western North Atlantic. Part I: Assimilation of satellite data into a mixed layer model. J. Phys. Oceanogr., 25 , 23442360.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., and B. Qiu, 1995b: Heat flux estimates for the western North Atlantic. Part II: The upper ocean heat balance. J. Phys. Oceanogr., 25 , 23612373.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., 1975: Air–sea transfer coefficients in diabatic conditions. Bound.-Layer Meteor., 9 , 91112.

  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the north Pacific and North America. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific decadal climate oscillation with impacts on salmon. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., D. R. Cayan, and W. B. White, 1998: A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. J. Climate, 11 , 31123127.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models of the upper ocean. Modelling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon Press, 152–172.

    • Search Google Scholar
    • Export Citation
  • Ostrovskii, A. G., and L. I. Piterbarg, 2000: Inversion of upper ocean temperature time series for entrainment, advection, and diffusivity. J. Phys. Oceanogr., 30 , 201214.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradience measurements in the upper ocean. J. Phys. Oceanogr., 7 , 952956.

  • Qiu, B., 1995: Variability and energetics of the Kuroshio Extension and its recirculation gyre from the first two-year TOPEX data. J. Phys. Oceanogr., 25 , 18271843.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2000: Interannual variability of the Kuroshio Extension System and its impact on the wintertime SST field. J. Phys. Oceanogr., 30 , 14861502.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and K. A. Kelly, 1993: Upper ocean heat balance in the Kuroshio Extension region. J. Phys. Oceanogr., 23 , 20272041.

  • Qiu, B., and W. Miao, 2000: Kuroshio path variations south of Japan: Bimodality as a self-sustained internal oscillation. J. Phys. Oceanogr., 30 , 21242137.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., K. A. Kelly, and T. M. Joyce, 1991: Mean flow and variability in the Kuroshio Extension from Geosat altimetry data. J. Geophys. Res., 96 , 1849118507.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1993: A fast and complete convection scheme for ocean models. Ocean Modelling, 101 (unpublished manuscripts) 911.

  • Rao, S. S., 1989: The Finite Element Method in Engineering. Pergamon Press, 625 pp.

  • Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface-layer and surface turbulent-flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32 , 383400.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. S. Smith, 1994: Improved global sea surface temperature analyses. J. Climate, 7 , 929948.

  • Schmeits, M. J., and H. A. Dijkstra, 2001: Bimodal behavior of the Kuroshio and the Gulf Stream. J. Phys. Oceanogr., 31 , 34353456.

  • Schneider, N., and A. J. Miller, 2001: Predicting western North Pacific Ocean climate. J. Climate, 14 , 39974002.

  • Schneider, N., A. J. Miller, and D. W. Pierce, 2002: Anatomy of North Pacific decadal variability. J. Climate, 15 , 586605.

  • Scott, J. D., and M. A. Alexander, 1999: Net shortwave fluxes over the ocean. J. Phys. Oceanogr., 29 , 31673174.

  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 (C12) 1546715472.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrel, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9 , 303319.

  • Vigan, X., C. Provost, R. Bleck, and P. Courtier, 2000: Sea surface velocities from sea surface temperature image sequences, Part I: Method and validation using primitive equation model output. J. Geophys. Res., 105 , 1949919514.

    • Search Google Scholar
    • Export Citation
  • Vivier, F., K. A. Kelly, and L. Thompson, 1999: Contributions of wind forcing, waves, and surface heating to sea surface height observations in the Pacific Ocean. J. Geophys. Res., 104 , 2076720788.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., T. Kunitani, A. Kubokawa, M. Nonaka, and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–97: A GCM simulation. J. Phys. Oceanogr., 30 , 27982813.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11 , 26282644.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. J., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 3 3 3

Heat Budget in the Kuroshio Extension Region: 1993–99

View More View Less
  • 1 Applied Physics Laboratory, School of Oceanography, University of Washington, Seattle, Washington
  • | 2 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • | 3 School of Oceanography, University of Washington, Seattle, Washington
Restricted access

Abstract

Processes responsible for the seasonal and interannual variations of the sea surface temperature as well as of the heat content of the upper ocean (0–400 m) in the Kuroshio Extension region are examined from a 3D advection–diffusion model in finite elements, with an embedded bulk mixed layer. The geostrophic velocity is specified externally from TOPEX/Poseidon altimeter data, and Ekman velocity is specified from NCEP wind stress. The thermal field from the model shows good agreement with observations. While both atmospheric and oceanic processes are required to explain observed nonseasonal SST changes, the interannual heat storage rate is dominated by horizontal advection. In particular, the transition between an elongated and a contracted state of the Kuroshio caused by geostrophic advection has a clear signature in the SST. There is an indication that this process is accompanied by consistent changes in nonseasonal entrainment: when the Kuroshio is in an elongated state and warmer waters are present below the mixed layer, entrainment appears less efficient in exporting heat out of the mixed layer.

Current affiliation: Laboratoire d'Océanographie Dynamique et de Climatologie, Université Pierre et Marie Curie, Paris, France

Corresponding author address: Dr. Frédéric Vivier, LODYC, Tour 15, étage 2, Université P. et M. Curie, 4, place Jussieu, 75252 Paris, Cedex 05, France. Email: fvi@lodyc.jussieu.fr

Abstract

Processes responsible for the seasonal and interannual variations of the sea surface temperature as well as of the heat content of the upper ocean (0–400 m) in the Kuroshio Extension region are examined from a 3D advection–diffusion model in finite elements, with an embedded bulk mixed layer. The geostrophic velocity is specified externally from TOPEX/Poseidon altimeter data, and Ekman velocity is specified from NCEP wind stress. The thermal field from the model shows good agreement with observations. While both atmospheric and oceanic processes are required to explain observed nonseasonal SST changes, the interannual heat storage rate is dominated by horizontal advection. In particular, the transition between an elongated and a contracted state of the Kuroshio caused by geostrophic advection has a clear signature in the SST. There is an indication that this process is accompanied by consistent changes in nonseasonal entrainment: when the Kuroshio is in an elongated state and warmer waters are present below the mixed layer, entrainment appears less efficient in exporting heat out of the mixed layer.

Current affiliation: Laboratoire d'Océanographie Dynamique et de Climatologie, Université Pierre et Marie Curie, Paris, France

Corresponding author address: Dr. Frédéric Vivier, LODYC, Tour 15, étage 2, Université P. et M. Curie, 4, place Jussieu, 75252 Paris, Cedex 05, France. Email: fvi@lodyc.jussieu.fr

Save