• Anderson, R. J., 1993: A study of wind stress and heat flux over the open ocean by the inertial-dissipation method. J. Phys. Oceanogr., 23 , 2153–2161.

    • Search Google Scholar
    • Export Citation
  • Anderson, R. J., and S. D. Smith, 1981: Evaporation coefficient for the sea surface from eddy flux measurements. J. Geophys. Res., 86 ((C1),) 449–456.

    • Search Google Scholar
    • Export Citation
  • Bunker, A. F., 1976: Computations of surface energy flux and annual air–sea interaction cycles of the North Atlantic Ocean. Mon. Wea. Rev., 104 , 1122–1140.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, and Y. Izumi, 1971: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28 , 181–189.

    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange over Sea (HEXOS) results. J. Geophys. Res., 101 ((C5),) 12001–12016.

    • Search Google Scholar
    • Export Citation
  • Dupuis, H., P. K. Taylor, A. Weill, and K. Katsaros, 1997: Inertial dissipation method applied to derive turbulent fluxes over the ocean during the surface of the ocean. J. Geophys. Res., 102 ((C9),) 21115–21129.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux profile relationships. Bound.-Layer Meteor., 7 , 363–372.

  • Edson, J. B., and C. W. Fairall, 1998: Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J. Atmos. Sci., 55 , 2311–2328.

    • Search Google Scholar
    • Export Citation
  • Frenzen, P., and C. A. Vogel, 1992: The turbulent kinetic energy budget in the atmospheric surface layer: A review and an experimental reexamination in the field. Bound.-Layer Meteor., 60 , 49–76.

    • Search Google Scholar
    • Export Citation
  • Gravech, A. A., C. W. Fairall, and S. E. Larsen, 1998: On the determination of the neutral drag coefficient in the convective boundary layer. Bound.-Layer Meteor., 86 , 257–278.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1990: Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J. Atmos. Sci., 47 , 1949–1972.

    • Search Google Scholar
    • Export Citation
  • Högström, U., . 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78 , 215–246.

    • Search Google Scholar
    • Export Citation
  • Isemer, H. J., and L. Hasse, 1987: The Bunker Climate Atlas of the North Atlantic Ocean. Vol. 2: Air–Sea Interactions. Springer, 256 pp.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1999: On the effect of ocean waves on the kinetic energy balance and consequences for the inertial dissipation technique. J. Phys. Oceanogr., 29 , 530–534.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. E. Gaynor, 1991: Another look at sonic thermometry. Bound.-Layer Meteor., 56 , 401–410.

  • Lab Sea Group, 1998: The Labrador Sea Deep Convection Experiment. Bull. Amer. Meteor. Soc., 79 , 2033–2058.

  • Large, W. G., and S. Pond, 1981: Open ocean flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11 , 324–336.

  • Large, W. G., and S. Pond, . 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12 , 464–482.

  • Liu, W. T., and T. V. Blanc, 1984: The Liu, Katsaros, and Businger (1979) bulk atmospheric flux computational iteration program in FORTRAN and BASIC. NRL Memo. Rep. 5291, Naval Research Laboratory, Washington D.C., 16 pp.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger, . 1979: Bulk parameterizations of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36 , 1722–1735.

    • Search Google Scholar
    • Export Citation
  • Moat, B., and M. Yelland, 1998: Airflow distortion at instrument sites on the R/V Knorr. Southampton Oceanography Centre, 29 pp.

  • Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32 , 383–400.

    • Search Google Scholar
    • Export Citation
  • Rutgersson, A., A-S. Smedman, and U. Högström, 2000: The use of conventional stability parameters during swell. Water and Heat Exchange Processes Over the Baltic Sea. A. Rutgersson, Ed., Vol. 530, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, University of Uppsala, 32 pp.

    • Search Google Scholar
    • Export Citation
  • Smedman, A., U. Högström, H. Bergström, and A. Rutgersson, 1999: A case study of air–sea interaction during swell conditions. J. Geophys. Res., 104 ((C11),) 25833–25851.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1980: Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10 , 709–726.

  • Smith, S. D., . 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 ((C12),) 15467–15472.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., and Coauthors. 1992: Sea surface wind stress and drag coefficients. Bound.-Layer Meteor., 60 , 109–142.

  • Thiermann, V., and H. Graßl, 1992: The measurement of turbulent surface layer fluxes by use of bichromatic scintillation. Bound.-Layer Meteor., 58 , 367–389.

    • Search Google Scholar
    • Export Citation
  • Wucknitz, J., 1978: The influence of anisotropy on stress estimation by the indirect dissipation method. Bound.-Layer Meteor., 17 , 119–131.

    • Search Google Scholar
    • Export Citation
  • Yelland, M. J., and P. K. Taylor, 1996: Wind stress measurements from the open ocean. J. Phys. Oceanogr., 26 , 541–558.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 234 39 4
PDF Downloads 71 33 5

Measurements of Turbulent Fluxes of Momentum and Sensible Heat over the Labrador Sea

Karl BumkeInstitut für Meereskunde, Universität Kiel, Kiel, Germany

Search for other papers by Karl Bumke in
Current site
Google Scholar
PubMed
Close
,
U. KargerInstitut für Meereskunde, Universität Kiel, Kiel, Germany

Search for other papers by U. Karger in
Current site
Google Scholar
PubMed
Close
, and
K. UhligInstitut für Meereskunde, Universität Kiel, Kiel, Germany

Search for other papers by K. Uhlig in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Turbulent fluxes of momentum and sensible heat were estimated from sonic anemometer measurements gathered over the Labrador Sea during a winter cruise of the R/V Knorr. The inertial dissipation method was used to calculate turbulent fluxes of momentum. The resulting drag coefficients agree well with earlier findings. Sensible heat fluxes were computed using both cross-correlation and inertial dissipation techniques. There is good agreement between results from both methods, although there is more scatter in the correlation fluxes than the dissipation fluxes. The inertial dissipation method gives reasonable results even under conditions of high wind speeds and low air temperatures, which combined with the relatively warm sea surface temperatures lead to sensible heat fluxes of several hundred watts per square meter. Sensible heat fluxes obtained from the sonic anemometer measurements agree well with bulk turbulent fluxes according to the formulation of Isemer and Hasse.

Corresponding author address: Karl Bumke, Institut für Meereskunde, Universität Kiel, FB 1, Maritime Meteorologie, Düsternbrooker Weg 20, 24105 Kiel, Germany. Email: kbumke@ifm.uni-kiel.de

Abstract

Turbulent fluxes of momentum and sensible heat were estimated from sonic anemometer measurements gathered over the Labrador Sea during a winter cruise of the R/V Knorr. The inertial dissipation method was used to calculate turbulent fluxes of momentum. The resulting drag coefficients agree well with earlier findings. Sensible heat fluxes were computed using both cross-correlation and inertial dissipation techniques. There is good agreement between results from both methods, although there is more scatter in the correlation fluxes than the dissipation fluxes. The inertial dissipation method gives reasonable results even under conditions of high wind speeds and low air temperatures, which combined with the relatively warm sea surface temperatures lead to sensible heat fluxes of several hundred watts per square meter. Sensible heat fluxes obtained from the sonic anemometer measurements agree well with bulk turbulent fluxes according to the formulation of Isemer and Hasse.

Corresponding author address: Karl Bumke, Institut für Meereskunde, Universität Kiel, FB 1, Maritime Meteorologie, Düsternbrooker Weg 20, 24105 Kiel, Germany. Email: kbumke@ifm.uni-kiel.de

Save