Abstract
The general circulation of the Labrador Sea is studied with a dataset of 53 surface drifters drogued at 15 m and several hydrographic sections done in May 1997. Surface drifters indicate three distinct speed regimes: fast boundary currents, a slower crossover from Greenland to Labrador, and a slow, eddy-dominated flow in the basin interior. Mean Eulerian velocity maps show several recirculation cells located offshore of the main currents, in addition to the cyclonic circulation of the Labrador Sea. Above the northern slope of the basin, the surface drifters have two preferential paths: one between the 1000-m and 2000-m isobaths and the other close to the 3000-m isobath. The vertical shear estimated from CTD data supports the presence of two distinct currents around the basin. One current, more baroclinic, flows between the 1000-m and 2000-m isobaths. The other one, more barotropic, flows above the lower continental slope. The Irminger Sea Water carried by the boundary currents is altered as it travels around the basin. Profiling Autonomous Lagrangian Circulation Explorer (PALACE) floats that followed approximately the Irminger Sea Water in the Labrador Sea show signs of isopycnal mixing between the interior and the boundary current in summer–fall and convection across the path of the Irminger Sea Water in winter–spring.
Corresponding author address: Dr. Jerome Cuny, School of Oceanography, University of Washington, Box 355351, Seattle, WA 98195-5351. Email: jcuny@ocean.washington.edu