• Cushman-Roisin, B., 1987: Subduction. Dynamics of the Oceanic Surface Mixed Layer, P. Muller and D. Henderson, Eds., Hawaii Institute of Geophysics Special, 181–196.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., and K. Hanawa, 2000: Mesoscale eddies observed by TOLEX-ADCP and TOPEX/Poseidon altimeter in the Kuroshio recirculation region south of Japan. J. Oceanogr., 56 , 4357.

    • Search Google Scholar
    • Export Citation
  • Feng, M., H. Mitsudera, and Y. Yoshikawa, 2000: Structure and variability of the Kuroshio Current in Tokara Strait. J. Phys. Oceanogr., 30 , 22572276.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., 1987: Interannual variations in the wintertime outcrop area of the Subtropical Mode Water in the North Pacific. Atmos.–Ocean, 25 , 358374.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Sieldler, J. Church, and J. Gould, Eds., Academic Press, 373–386.

    • Search Google Scholar
    • Export Citation
  • Hautala, S. L., and D. H. Roemmich, 1998: Subtropical mode water in the Northeast Pacific basin. J. Geophys. Res., 103 , 1305513066.

  • Hazeleger, W., and S. S. Drijfhout, 2000: Eddy subduction in a model of the subtropical gyre. J. Phys. Oceanogr., 30 , 677695.

  • Hellerman, S., and M. Rosenstein, 1983: Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr., 13 , 10931104.

    • Search Google Scholar
    • Export Citation
  • Hosoda, S., S-P. Xie, K. Takeuchi, and M. Nonaka, 2001: Eastern North Pacific subtropical mode water in a GCM: Formation mechanism and salinity effects. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Iselin, C. O. D., 1939: The influence of vertical and lateral turbulence on the characteristics of the waters at mid-depths. Trans. Amer. Geophys. Union, 20 , 414417.

    • Search Google Scholar
    • Export Citation
  • Ishida, A., Y. Kashino, H. Mitsudera, N. Yoshioka, and T. Kadokura, 1998: Preliminary results of a global high-resolution GCM experiment. J. Fac. Sci. Hokkaido Univ., Ser. VII (Geophysics), 11 , 441460.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., 1987: Hydrographic sections across the Kuroshio Extension at 165°E and 175°W. Deep-Sea Res., 34 , 1333113352.

  • Kubokawa, A., 1999: Ventilated thermocline strongly affected by a deep mixed layer: A theory for subtropical countercurrent. J. Phys. Oceanogr., 29 , 13141333.

    • Search Google Scholar
    • Export Citation
  • Ladd, C., and L. Thompson, 2001: Water mass formation in an isopycnal model of the North Pacific. J. Phys. Oceanogr., 31 , 15171537.

  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper No. 13, U. S. Govt. Printing Office, 173 pp and 17 microfiche.

    • Search Google Scholar
    • Export Citation
  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar Res., 55 , 201222.

  • Masuzawa, J., 1969: Subtropical mode water. Deep-Sea Res., 16 , 463472.

  • Nakamura, H., 1996: A pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific: Its distribution and formation. J. Oceanogr., 52 , 171188.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. X. Huang, 1995: Ventilation of the North Atlantic and North Pacific: Subduction versus obduction. J. Phys. Oceanogr., 25 , 23742390.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and W. Miao, 2000: Kuroshio path variations south of Japan: Bimodality as a self-sustained internal oscillation. J. Phys. Oceanogr., 30 , 21242137.

    • Search Google Scholar
    • Export Citation
  • Qu, T., H. Mitsudera, and B. Qiu, 2001: A climatological view of the Kuroshio/Oyashio system east of Japan. J. Phys. Oceanogr., 31, 2575–2589.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., P. P. Niiler, and C. J. Koblinsky, 1987: Two-year moored instrument results along 152°E. J. Geophys. Res., 92 , 1082610834.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., and R. M. Chervin, 1992: Ocean general circulation from a global edy-resolving model. J. Geophys. Res., 97 , 54935550.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1979: Determination of watermass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. U.S.A., 76 , 30513055.

    • Search Google Scholar
    • Export Citation
  • Suga, T., Y. Takei, and K. Hanawa, 1997: Thermostad distribution in the North Pacific subtropical gyre: The central mode water and the subtropical mode water. J. Phys. Oceanogr., 27 , 140152.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1988: Potential vorticity distribution in the North Pacific. J. Phys. Oceanogr., 18 , 89106.

  • Talley, L. D., . 1999: Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulation. Mechanisms of Global Climate Change at Millenial Time Scales, Geophys. Monogr., No. 112, Amer. Geophys. Res., 1–22.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., 1989: The influence of air–sea interaction on the ventilated thermocline. J. Phys. Oceanogr., 19 , 12551267.

  • Williams, R. G., . 1991: The role of the mixed layer in setting the potential vorticity of the main thermocline. J. Phys. Oceanogr., 21 , 18031814.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., M. Spall, and J. C. Marshall, 1995: Does Stommel's mixed layer “demon” work? J. Phys. Oceanogr., 25 , 30893102.

  • Woods, J. D., 1985: The physics of pycnocline ventilation. Coupled Ocean–Atmosphere Models, J. C. J. Nihoul, Ed., Elsevier Science, 543–590.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., T. Kunitani, A. Kubokawa, M. Nonaka, and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–1997: A GCM simulation. J. Phys. Oceanogr., 30 , 27982813.

    • Search Google Scholar
    • Export Citation
  • Yasuda, T., and K. Hanawa, 1997: Decadal changes in the mode waters in the midlatitude North Pacific. J. Phys. Oceanogr., 27 , 858870.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 260 83 14
PDF Downloads 130 73 13

Subduction of the North Pacific Mode Waters in a Global High-Resolution GCM

View More View Less
  • 1 International Pacific Research Center, SOEST, University of Hawaii, Honolulu, Hawaii
  • | 2 Frontier Research System for Global Change, Tokyo, Japan, and International Pacific Research Center, SOEST, University of Hawaii, Honolulu, Hawaii
  • | 3 Frontier Research System for Global Change, Tokyo, and Japan Marine Science and Technology Center, Yokosuka, Japan
Restricted access

Abstract

The annual subduction rate in the North Pacific is estimated using five-day outputs from a high-resolution general circulation model (GCM). Two maxima (>200 m yr−1) are found in the western North Pacific: one is responsible for the formation of the subtropical mode water (STMW) and the other for the formation of the central mode water (CMW). A local maximum (>75 m yr−1) is also found in the formation region of the eastern subtropical mode water (ESMW). These results are compared with a calculation using the winter mixed layer depth and annual mean velocity fields to examine the effect of mesoscale eddies. Although the mesoscale eddies do not markedly affect the general subduction pattern, they enhance the annual subduction rate by up to 100 m yr−1 in the formation region of the STMW/CMW, a 34% increase in a regional average (30°–44°N, 140°E–170°W). Further analysis shows that the effects of the mean seasonal cycle and smaller-scale (<30 days) eddies are generally small. The authors suggest that the two peaks in the subduction rate are related to a double-front structure on the intergyre boundary in the western North Pacific.

Corresponding author address: Dr. Tangdong Qu, IPRC-SOEST, University of Hawaii at Manoa, 2525 Correa Road, Honolulu, HI 96822. Email: tangdong@soest.hawaii.edu

Abstract

The annual subduction rate in the North Pacific is estimated using five-day outputs from a high-resolution general circulation model (GCM). Two maxima (>200 m yr−1) are found in the western North Pacific: one is responsible for the formation of the subtropical mode water (STMW) and the other for the formation of the central mode water (CMW). A local maximum (>75 m yr−1) is also found in the formation region of the eastern subtropical mode water (ESMW). These results are compared with a calculation using the winter mixed layer depth and annual mean velocity fields to examine the effect of mesoscale eddies. Although the mesoscale eddies do not markedly affect the general subduction pattern, they enhance the annual subduction rate by up to 100 m yr−1 in the formation region of the STMW/CMW, a 34% increase in a regional average (30°–44°N, 140°E–170°W). Further analysis shows that the effects of the mean seasonal cycle and smaller-scale (<30 days) eddies are generally small. The authors suggest that the two peaks in the subduction rate are related to a double-front structure on the intergyre boundary in the western North Pacific.

Corresponding author address: Dr. Tangdong Qu, IPRC-SOEST, University of Hawaii at Manoa, 2525 Correa Road, Honolulu, HI 96822. Email: tangdong@soest.hawaii.edu

Save