• Barnier, B., 1998: Forcing the ocean. Ocean Modeling and Parameterization, E. P. Chassignet and J. Verron, Eds., Kluwer Academic, 45–80.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., L. Siefridt, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analysis. J. Mar. Syst., 6 , 36380.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23 , 13651388.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., H. P. Hanson, D. Hu, and E. B. Kraus, 1989: Mixed layer–thermocline interaction in a three-dimensional isopycnic coordinate model. J. Phys. Oceanogr., 19 , 14171439.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and S. J. Godfrey, 1995: Surface heat flux parameterizations and the variability of thermohaline circulation. J. Geophys. Res., 100 , 1067910692.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and P. C. Chu, 1996: Ocean climate drift and interdecadal oscillation due to a change in thermal damping. J. Climate, 9 , 28212833.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 1994: Near-surface forcing and climate. Large Eddy Simulation of Complex Engineering and Geophysical Flows, B. Galperin and S. A. Orszag, Eds., Cambridge University Press, 489–509.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and J. Verron, Eds.,. 1998: Ocean Modeling and Parameterization. Kluwer Academic, 451 pp.

  • Chen, D., L. M. Rothstein, and A. J. Busalacchi, 1994: A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys. Oceanogr., 24 , 21562179.

    • Search Google Scholar
    • Export Citation
  • Chu, P. C., Y. Chen, and S. Lu, 1998: On Haney-type surface thermal boundary conditions for ocean circulation models. J. Phys. Oceangr., 28 , 890901.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24 , 25462559.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., M. A. Donelan, E. A. Terray, and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26 , 808815.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2000: On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor–Yamada turbulence scheme. J. Geophys. Res., 105 , 1684316855.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., and G. L. Mellor, 1992: A numerical study of the variability and the separation of the Gulf Stream, induced by surface atmospheric forcing and lateral boundary flows. J. Phys. Oceanogr., 22 , 660682.

    • Search Google Scholar
    • Export Citation
  • Fieux, M., C. Andrié, P. Delecluse, A. G. Ilahude, A. Kartavtseff, F. Mantisi, R. Molcard, and J. Swallow, 1994: Measurements within the Pacific–Indian Oceans throughflow region. Deep-Sea Res., 41 , 10911130.

    • Search Google Scholar
    • Export Citation
  • Frankigonoul, C., A. Czaja, and B. L'Heveder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11 , 23102324.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. H. Munk, 1975: Space–time scales of internal waves: A progress report. J. Geophys. Res., 80 , 291297.

  • Gaspar, P., Y. Gregoris, and J. M. Lefevre, 1990: A simple eddy-kinetic-energy model for simulations of the ocean vertical mixing: Tests at station Papa and Long-Term Upper Ocean Study Site. J. Geophys. Res., 95 , 1617916193.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., A. C. Hirst, and J. Wilkin, 1993: Why does the Indonesian Throughflow appear to originate from the North Pacific? J. Phys. Oceanogr., 23 , 10871098.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94 , 96869698.

  • Haidvogel, D. B., and F. O. Bryan, 1992: Ocean general circulation modeling. Climate System Modeling, K. E. Trenberth, Ed., Cambridge University Press, 371–412.

    • Search Google Scholar
    • Export Citation
  • Halperin, D. A., 1980: A Pacific equatorial temperature section from 172 E to 110 W during winter and spring 1979. Deep-Sea Res., 27 , 931940.

    • Search Google Scholar
    • Export Citation
  • Hellerman, S., and M. Rosenstein, 1983: Normal monthly wind stress over the world ocean model. J. Phys. Oceanogr., 13 , 10931104.

  • Hirst, A. C., and W. Cai, 1994: Sensitivity of a World Ocean GCM to changes in subsurface mixing parameterization. J. Phys. Oceanogr., 24 , 12561279.

    • Search Google Scholar
    • Export Citation
  • Ishikawa, Y., T. Awaji, and A. Akitomo, 1997: Global surface circulation and its kinetic energy distribution derived from drifting buoys. J. Oceanogr., 53 , 489516.

    • Search Google Scholar
    • Export Citation
  • Jiang, S., P. H. Stone, and P. Malanotte-Rizzoli, 1999: An assessment of the Geophysical Fluid Dynamics Laboratory ocean model with coarse resolution: Annual mean climatology. J. Geophys. Res., 104 , 2562325645.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1989: On the parameterization of deep convection in ocean models. Parameterizations of Small-Scale Process: Proc. ‘Aha Huliko’a Hawaiian Winter Workshop, Manoa, HI, University of Hawaii at Manoa, 59–74.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., J. Marshall, and U. Send, 1996: Representation of convective plumes by vertical adjustment. J. Geophys. Res., 101 , 1817518182.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline; II. The general theory and its consequences. Tellus, 19 , 98105.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and P. R. Gent, 1999: Validation of vertical mixing in an equatorial ocean model using large eddy simulation and observations. J. Phys. Oceanogr., 29 , 449464.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27 , 24182447.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. B. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364 , 701703.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Maltrud, M. E., R. D. Smith, A. J. Semtner, and R. C. Malone, 1998: Global eddy-resolving ocean simulations driven by 1982–1995 atmospheric winds. J. Geophys. Res., 103 , 3082530853.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., and J. Willebrand, 1991: Multiple equilibra of the global thermohaline circulation. J. Phys. Oceanogr., 21 , 13721385.

  • Masumoto, Y., and T. Yamagata, 1996: Seasonal variations of the Indonesian throughflow in a general ocean circulation model. J. Geophys. Res., 101 , 1228712293.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1996: Modeling the ocean general circulation. Annu. Rev. Fluid Mech., 28 , 215248.

  • Meehl, G. A., 1993: Global coupled models: Atmosphere, ocean, sea ice. Climate System Modeling, K. E. Trenberth, Eds., Cambridge University Press, 555–581.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulent closure model for geophysical fluid problems. Rev. Geophys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Mikolajewicz, U., and E. Maier-Reimer, 1994: Mixed boundary conditions in the ocean general circulation models and their influence on the stability of the model's conveyor belt. J. Geophys. Res., 99 , 2263322644.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., 1996: Dynamics of diurnal thermocline formation in the oceanic mixed layer. J. Phys. Oceanogr., 26 , 21832195.

  • Noh, Y., and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104 , 1562115634.

    • Search Google Scholar
    • Export Citation
  • Nowlin, W. D. Jr,, and J. M. Klinck, 1986: The physics of the Antarctic Circumpolar Current. Rev. Geophys., 24 , 469491.

  • Oberhuber, J. M., 1993: Simulation of the Atlantic circulation with a coupled sea ice–mixed layer–isopycnal general circulation model. Part I: Model description. J. Phys. Oceanogr., 23 , 808829.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of the tropical oceans. J. Phys. Oceanogr., 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., K. W. Dixon, and A. Rosati, 1991: GFDL Modular Ocean Model, Users Guide Version 1.0. GFDL Tech. Rep. 2, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 46 pp.

    • Search Google Scholar
    • Export Citation
  • Peters, H., M. C. Gregg, and J. M. Toole, 1988: On the parameterization of equatorial turbulence. J. Geophys. Res., 93 , 11991218.

  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91 , 84118427.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and J. Willebrand, 1995: The role of temperature feedback in stabilizing the thermohaline circulation. J. Phys. Oceanogr., 25 , 787805.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., C. Frankignoul, E. Kestenare, and M. J. McPhaden, 1994: Seasonal variability in the surface currents of the equatorial Pacific. J. Geophys. Res., 99 , 2032320343.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rosati, A., and K. Miyakoda, 1988: A general circulation model for upper ocean simulation. J. Phys. Oceanogr., 18 , 16011626.

  • Seager, R., Y. Kushnir, and M. A. Cane, 1995: On heat flux boundary conditions for ocean models. J. Phys. Oceanogr., 25 , 32193230.

  • Semtner, A. J., and R. M. Chervin, 1992: Ocean general circulation from an eddy-resolving model. J. Geophys. Res., 97 , 54935550.

  • Stammer, D., R. Tokmakian, A. Semtner, and C. Wunsch, 1996: How well does a 1/4° global circulation model simulate large-scale oceanic observation? J. Geophys. Res., 101 , 2577925811.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., and A. Kattenberg, 1994: Embedding a mixed layer model into an ocean general circulation model of the Atlantic: The importance of surface mixing for heat flux and temperature. J. Geophys. Res., 99 , 1413914157.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T., D. Anderson, M. Davery, P. Deleculuse, A. Kattenberg, Y. Kitamura, M. Latif, and T. Yamagata, 1993: Intercomparison of tropical ocean GCMs. WMO Tech. Doc. WMO/TD 545, WCRP-79, 53 pp.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams III, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26 , 792807.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., K. Dixon, and K. Bryan, 1989: Simulations of radiocarbon in a coarse resolution world ocean model. I. Steady state prebomb distribution. J. Geophys. Res., 94 , 82178242.

    • Search Google Scholar
    • Export Citation
  • Tomczak, M., and J. S. Godfrey, 1994: Regional Oceanography: An Introduction. Pergamon.

  • Toole, M. O., 1998: Turbulent mixing in the ocean. Ocean Modeling and Parameterization, E. P. Chasignet and J. Vernon, Eds., Kluwer Academic, 171–190.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. G. Olson, and W. G. Large, 1989: A global ocean wind stress climatology based on ECMWF analyses. NCAR Tech. Note NCAR/TN-338+ STR, 93 pp.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 1985: Structure of the planetary boundary layer and implications for its modeling. J. Climate Appl. Meteor., 24 , 11311142.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., and B. Kilonsky, 1984: Mean water and current structure during the Hawaii–Tahiti Shuttle Experiment. J. Phys. Oceanogr., 14 , 242254.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 237 50 2
PDF Downloads 97 49 0

Simulation of More Realistic Upper-Ocean Processes from an OGCM with a New Ocean Mixed Layer Model

View More View Less
  • 1 Department of Atmospheric Sciences, Yonsei University, Seoul, Korea
  • | 2 Department of Earth and Planetary Physics, University of Tokyo, Tokyo, Japan
  • | 3 Department of Oceanography, Naval Postgraduate School, Monterey, California
  • | 4 Korean Oceanographic Research and Development Institute, Ansan, Korea
Restricted access

Abstract

A new ocean mixed layer model (OMLM) was embedded into an ocean general circulation model (OGCM) with the aim of providing an OGCM that is ideal for application to a climate model by predicting the sea surface temperature (SST) more accurately. The results from the new OMLM showed a significant improvement in the prediction of SST compared to the cases of constant vertical mixing and the vertical mixing scheme by Pacanowski and Philander. More accurate prediction of the SST from the new OMLM reduces the magnitude of the restoring term in the surface heat flux and thus provides a simulated ocean that can be coupled to the atmospheric general circulation model more naturally. The new OMLM was also shown to improve various other features of the OGCM such as the mixed layer depth and the equatorial circulation.

Current affiliation: Korean Oceanographic Research and Development Institute, Ansan, Korea

Corresponding author address: Prof. Yign Noh, Department of Atmospheric Sciences, Yonsei University, Seoul 120-749, Korea. Email: noh@atmos.yonsei.ac.kr

Abstract

A new ocean mixed layer model (OMLM) was embedded into an ocean general circulation model (OGCM) with the aim of providing an OGCM that is ideal for application to a climate model by predicting the sea surface temperature (SST) more accurately. The results from the new OMLM showed a significant improvement in the prediction of SST compared to the cases of constant vertical mixing and the vertical mixing scheme by Pacanowski and Philander. More accurate prediction of the SST from the new OMLM reduces the magnitude of the restoring term in the surface heat flux and thus provides a simulated ocean that can be coupled to the atmospheric general circulation model more naturally. The new OMLM was also shown to improve various other features of the OGCM such as the mixed layer depth and the equatorial circulation.

Current affiliation: Korean Oceanographic Research and Development Institute, Ansan, Korea

Corresponding author address: Prof. Yign Noh, Department of Atmospheric Sciences, Yonsei University, Seoul 120-749, Korea. Email: noh@atmos.yonsei.ac.kr

Save