• Baines, P. G., and W. Cai, 2000: Analysis of an interactive instability mechanism for the Antarctic Circumpolar Wave. J. Climate, 13 , 18311844.

    • Search Google Scholar
    • Export Citation
  • Banks, H. T., R. A. Wood, J. M. Gregory, T. C. Johns, and G. S. Jones, 2000: Are observed decadal changes in intermediate water masses a signature of anthropogenic climate change? Geophys. Res. Lett., 27 , 29612964.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and J. A. Church, 1992: Warming of the water column in the southwest Pacific Ocean. Nature, 357 , 5962.

  • Bindoff, N. L., and T. J. McDougall, 1994: Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr., 24 , 11371152.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., . 2000: Decadal changes along an Indian Ocean section at 32°S and their interpretation. J. Phys. Oceanogr., 30 , 12071222.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82.

  • Church, J., J. Godfrey, D. Jackett, and T. McDougall, 1991: A model of sea level rise caused by ocean thermal expansion. J. Climate, 4 , 438456.

    • Search Google Scholar
    • Export Citation
  • England, M. H., 1995: Using chlorofluorocarbons to assess ocean climate models. Geophys. Res. Lett., 22 , 30513054.

  • England, M. H., J. Godfrey, A. Hirst, and M. Tomczak, 1993: The mechanism for Antarctic Intermediate Water renewal in a World Ocean model. J. Phys. Oceanogr., 23 , 15531560.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and W. R. Young, 1997: On the development of thermohaline correlations as a result of nonlinear diffusive parameterizations. J. Mar. Res., 55 , 10691101.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1991: The Southern Ocean: Its involvement in global change. Proc. Int. Conf. on the Role of the Polar Regions in Global Change, Fairbanks, AK, University of Alaska, Fairbanks, 249–255.

    • Search Google Scholar
    • Export Citation
  • Jacobs, G. A., and J. L. Mitchell, 1996: Ocean circulation variations associated with the Antarctic Circumpolar Wave. Geophys. Res. Lett., 23 , 29472950.

    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., P. M. Bruchhausen, and E. B. Bauer, 1970: Eltanin reports cruises 32–36, 1968. Tech. Rep., Lamont Doherty Geological Observatory of Columbia University, Palisades, NY, 460 pp.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and A. H. Orsi, 1997: Southwest Pacific Ocean water-mass changes between 1968/69 and 1990/91. J. Climate, 10 , 306316.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1998: The Southampton Oceanography Centre (SOC) Ocean–Atmosphere Heat, Momentum, and Freshwater Flux Atlas. Rep. 6, Southampton Oceanography Centre, 30 pp.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 347471.

  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1996: Low-frequency variability of surface air temperature in a 1000-year integration of a coupled ocean–atmosphere–land surface model. J. Climate, 9 , 376393.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1977: Subantarctic mode water. A Voyage of Discovery: George Deacon 70th Anniversary Volume (supplement to Deep-Sea Research), M. V. Angel, Ed., Pergamon Press, 103–119.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., . 1982: The subtropical recirculation of mode waters. J. Mar. Res., 40 , (Suppl.),. 427464.

  • Metzl, N., B. Tilbrook, and A. Poisson, 1999: The annual fCO2 cycle and the air–sea CO2 flux in the sub-Antarctic Ocean. Tellus, 51B , 849861.

    • Search Google Scholar
    • Export Citation
  • Poisson, A., N. Metzl, C. Brunet, B. Schauer, B. Bres, D. Ruiz-Pino, and F. Louanchi, 1993: Variability of sources and sinks of CO2 in the Western Indian and Southern Oceans during 1991. J. Geophys. Res., 98 , 2275922778.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2000: Interannual variability of the Kuroshio Extension System and its impact on the wintertime SST field. J. Phys. Oceanogr., 30 , 14861502.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., 2000: Multidecadal climate variability in the subtropics/midlatitudes of the Southern Hemisphere oceans. Tellus, 52A , 203223.

    • Search Google Scholar
    • Export Citation
  • Ribbe, J., 1999: On wind-driven mid-latitude convection in ocean general circulation models. Tellus, 51A , 505516.

  • Rintoul, S. R., 1991: South Atlantic interbasin exchange. J. Geophys. Res., 96 , 26752692.

  • Rintoul, S. R., and J. L. Bullister, 1999: A late winter hydrographic section from Tasmania to Antarctica. Deep-Sea Res. I, 46 , 14171454.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and S. Sokolov, 2001: Baroclinic transport variability of the Antarctic Circumpolar Current south of Australia (WOCE repeat section SR3). J. Geophys. Res., 106 , 27952814.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and T. W. Trull, 2001: Seasonal evolution of the mixed layer in the subantarctic zone south of Australia. J. Geophys. Res.,107, 31 447–31 460.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., J-R. Donguy, and D. H. Roemmich, 1997: Seasonal evolution of upper ocean thermal structure between Tasmania and Antarctica. Deep-Sea Res. I, 44 , 11851202.

    • Search Google Scholar
    • Export Citation
  • Roden, G. I., 1977: Oceanic subarctic fronts of the central Pacific: Structure of and response to atmospheric forcing. J. Phys. Oceanogr., 7 , 761778.

    • Search Google Scholar
    • Export Citation
  • Rosenberg, M., R. Eriksen, and S. Rintoul, 1995: Aurora Australis marine science cruise AU9309/AU9391: Oceanographic field measurements and analysis. Research Rep. 2, Antarctic Cooperative Research Center, Hobart, Tasmania, Australia, 103 pp.

    • Search Google Scholar
    • Export Citation
  • Rosenberg, M., S. Bray, N. Bindoff, S. Rintoul, N. Johnson, S. Bell, and P. Towler, 1997: Aurora Australis marine science cruise AU9501, AU9604, and AU9601: Oceanographic field measurements and analysis, inter-cruise comparisons and data quality notes. Research Rep. 12, Antarctic Cooperative Research Center, Hobart, Tasmania, Australia, 150 pp.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and R. Ferrari, 1999: Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science, 283 , 526529.

    • Search Google Scholar
    • Export Citation
  • Sabine, C., R. M. Key, K. Johnson, F. J. Millero, A. Poisson, J. Sarmiento, D. W. R. Wallace, and C. D. Winn, 1999: Anthropogenic CO2 inventory of the Indian Ocean. Global Biogeochem. Cycles, 13 , 179198.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001a: Circulation, renewal, and modification of Antarctic mode and intermediate water. J. Phys. Oceanogr., 31 , 10051030.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., . 2001b: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31 , 143173.

  • Speer, K. G., S. R. Rintoul, and B. M. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30 , 32123222.

  • Sutton, R. T., and M. R. Allen, 1997: Decadal predictability of North Atlantic temperature and climate. Nature, 388 , 563567.

  • Talley, L. D., 1996: Antarctic Intermediate Water in the South Atlantic. The South Atlantic: Present and Past Circulation, G. Wefer et al., Eds., Springer, 219–238.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., . 1999: Simple coupled midlatitude climate models. J. Phys. Oceanogr., 29 , 20162037.

  • Thompson, R. O. R. Y., and R. J. Edwards, 1981: Mixing and water-mass formation in the Australian Subantarctic. J. Phys. Oceanogr., 11 , 13991406.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1972: Insensitivity of subtropical mode water characteristics to meteorological fluctuations. Deep-Sea Res., 19 , 119.

  • Watterson, I. G., 2000: Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J. Climate, 13 , 562578.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and R. Peterson, 1996: An Antarctic Circumpolar Wave in surface pressure, wind, temperature and sea ice extent. Nature, 380 , 699702.

    • Search Google Scholar
    • Export Citation
  • White, W. B., S-C. Chen, and R. Peterson, 1998: The Antarctic Circumpolar Wave: A beta effect in ocean–atmosphere coupling over the Southern Ocean. J. Phys. Oceanogr., 28 , 23452361.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., N. L. Bindoff, and J. Church, 1999: Large-scale freshening of intermediate waters in the Pacific and Indian Oceans. Nature, 400 , 440443.

    • Search Google Scholar
    • Export Citation
  • Yasuda, T., and K. Hanawa, 1997: Decadal changes in the mode waters in the midlatitude North Pacific. J. Phys. Oceanogr., 27 , 858870.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 1994: The subintertial mixed layer approximation. J. Phys. Oceanogr., 24 , 18121826.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 522 226 24
PDF Downloads 328 176 13

Ekman Transport Dominates Local Air–Sea Fluxes in Driving Variability of Subantarctic Mode Water

View More View Less
  • 1 Antarctic CRC, and CSIRO Division of Oceanography, Hobart, Australia
  • | 2 University of New South Wales, Sydney, New South Wales, Australia
Restricted access

Abstract

Subantarctic Mode Water (SAMW) is formed by deep convection in winter on the equatorward side of the Antarctic Circumpolar Current. Observations south of Australia show that the SAMW temperature (T) and salinity (S) vary significantly from year to year. The magnitude and density-compensating nature of the temperature and salinity changes cannot be explained by variations in air–sea exchange of heat and freshwater in the subantarctic zone where SAMW is formed. Rather, the T and S variability reflects variations in the equatorward Ekman transport of cool, low salinity water across the subantarctic front. Experiments with a coupled climate model suggest that the observations south of Australia are typical of the subantarctic zone. The model changes in SAMW properties are correlated significantly (at 99% level) with changes in wind stress and northward Ekman transport of cool low-salinity water. In contrast, air–sea heat flux anomalies are mostly a response to changes in SST, and anomalies in precipitation minus evaporation in the subantarctic zone are too small to account for the model SAMW salinity variations. Mode waters provide significant reservoirs of heat and freshwater that extend below the depth of the seasonal thermocline and, hence, can persist from year to year. The fact that wind stress variations can drive changes in mode water properties therefore has implications for climate variability.

Corresponding author address: Dr. Stephen R. Rintoul, CSIRO Oceanography, GPO Box 1538, Hobart TAS 7001, Australia. Email: rintoul@drought.ml.csiro.au

Abstract

Subantarctic Mode Water (SAMW) is formed by deep convection in winter on the equatorward side of the Antarctic Circumpolar Current. Observations south of Australia show that the SAMW temperature (T) and salinity (S) vary significantly from year to year. The magnitude and density-compensating nature of the temperature and salinity changes cannot be explained by variations in air–sea exchange of heat and freshwater in the subantarctic zone where SAMW is formed. Rather, the T and S variability reflects variations in the equatorward Ekman transport of cool, low salinity water across the subantarctic front. Experiments with a coupled climate model suggest that the observations south of Australia are typical of the subantarctic zone. The model changes in SAMW properties are correlated significantly (at 99% level) with changes in wind stress and northward Ekman transport of cool low-salinity water. In contrast, air–sea heat flux anomalies are mostly a response to changes in SST, and anomalies in precipitation minus evaporation in the subantarctic zone are too small to account for the model SAMW salinity variations. Mode waters provide significant reservoirs of heat and freshwater that extend below the depth of the seasonal thermocline and, hence, can persist from year to year. The fact that wind stress variations can drive changes in mode water properties therefore has implications for climate variability.

Corresponding author address: Dr. Stephen R. Rintoul, CSIRO Oceanography, GPO Box 1538, Hobart TAS 7001, Australia. Email: rintoul@drought.ml.csiro.au

Save