• Aagaard, K., 1981: On the deep circulation of the Arctic Ocean. Deep-Sea Res., 28A , 251268.

  • Altman, D. B., and A. E. Gargett, 1990: Differential property transport due to incomplete mixing in a stratified fluid. Stratified Flows, E. J. List and G. H. Jirka, Eds., American Society of Civil Engineers, 454–460.

    • Search Google Scholar
    • Export Citation
  • Anderson, L. G., and Coauthors. 1994: Water masses and circulation in the Eurasian Basin: Results from the Oden 91 expedition. J. Geophys. Res., 99 , 32733283.

    • Search Google Scholar
    • Export Citation
  • Carmack, E. C., and Coauthors. 1997: Changes in temperature and tracer distributions within the Arctic Ocean: Results from the 1994 Arctic Ocean section. Deep-Sea Res., 44 , 14871502.

    • Search Google Scholar
    • Export Citation
  • Carmack, E. C., K. Aagaard, J. H. Swift, R. G. Perkin, F. A. McLaughlin, R. W. Macdonald, and E. P. Jones, 1999: Thermohaline transitions. Physical Processes in Lakes and Oceans, IUTAM Proceedings, J. Imberger, Ed., Amer. Geophys. Union, 179–186.

    • Search Google Scholar
    • Export Citation
  • D'Asaro, E. A., and J. H. Morison, 1992: Internal waves and mixing in the Arctic Ocean. Deep-Sea Res., 39 , S. 459S484.

  • Gargett, A. E., 1984: Vertical eddy diffusivity in the ocean interior. J. Mar. Res., 42 , 359393.

  • Gargett, A. E., . 1989: Ocean turbulence. Annu. Rev. Fluid Mech., 21 , 419451.

  • Gargett, A. E., and G. Holloway, 1984: Dissipation and diffusion by internal wave breaking. J. Mar. Res., 42 , 1527.

  • Gargett, A. E., . 1992: Sensitivity of the GFDL ocean model to different diffusivities for heat and salt. J. Phys. Oceanogr., 22 , 11581177.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., and B. Ferron, 1996: The effects of differential vertical diffusion of T and S in a box model of thermohaline circulation. J. Mar. Res., 54 , 827866.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1979: Mixing in the ocean interior. Dyn. Atmos. Oceans, 3 , 239265.

  • Hebert, D., 1999: Intrusions: What drives them? J. Phys. Oceanogr., 29 , 13821391.

  • Kelley, D. E., 1990: Fluxes through diffusive staircases: A new formulation. J. Geophys. Res., 95 , 33653371.

  • Kerr, O. S., and J. Y. Holyer, 1986: The effect of rotation on double-diffusive interleaving. J. Fluid Mech., 162 , 2333.

  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer release experiment. Nature, 364 , 701703.

    • Search Google Scholar
    • Export Citation
  • May, B. D., and D. E. Kelley, 1997: Effect of baroclinicity on double-diffusive interleaving. J. Phys. Oceanogr., 27 , 19972008.

  • May, B. D., . 2001: Growth and steady state stages of thermohaline intrusions in the Arctic Ocean. J. Geophys. Res., 106 , 1678316794.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1985: Double-diffusive interleaving. Part I: Linear stability analysis. J. Phys. Oceanogr., 15 , 15321541.

  • McIntyre, M. E., 1970: Diffusive destabilization of the baroclinic circular vortex. Geophys. Fluid Dyn., 1 , 1957.

  • Merryfield, W. J., 2000: Origin of thermohaline staircases. J. Phys. Oceanogr., 30 , 10461068.

  • Merryfield, W. J., G. Holloway, and A. E. Gargett, 1998: Differential vertical transport of heat and salt by weak stratified turbulence. Geophys. Res. Lett., 25 , 27732776.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., . 1999: A global ocean model with double-diffusive mixing. J. Phys. Oceanogr., 29 , 11241142.

  • Ruddick, B. R., 1992: Intrusive mixing in a Mediterranean salt lens—Intrusion slopes and dynamical mechanisms. J. Phys. Oceanogr., 22 , 12741285.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B. R., R. W. Griffiths, and G. Symonds, 1989: Frictional stress across a sheared double-diffusive interface. J. Geophys. Res., 94 , 1816118173.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. P. Jones, L. G. Anderson, and G. Kattner, 1994: On the intermediate depth waters of the Arctic Ocean. The Role of the Polar Oceans in Shaping Global Climate, O. M. Johannessen, R. D. Muench, and J. E. Overlans, Eds., Amer. Geophys. Union, 33–46.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., G. Björk, R. D. Muench, and U. Schauer, 1999: Double-diffusive layering in the Eurasian Basin of the Arctic Ocean. J. Mar. Syst., 21 , 327.

    • Search Google Scholar
    • Export Citation
  • Schadlow, S. G., E. Thomas, and J. R. Kosleff, 1992: The dynamics of intrusions into a thermohaline stratification. J. Fluid Mech., 236 , 127165.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1994: Double diffusion in oceanography. Annu. Rev. Fluid Mech., 26 , 255285.

  • Stern, M. E., 1967: Lateral mixing of water masses. Deep-Sea Res., 14 , 747753.

  • Toole, J. M., and D. T. Georgi, 1981: On the dynamics of double-diffusively driven intrusions. Progress in Oceanography, Vol. 10, Pergamon, 123–145.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1968: The influence of molecular diffusivity on turbulent entrainment across a density interface. J. Fluid Mech., 33 , 639656.

    • Search Google Scholar
    • Export Citation
  • Walsh, D., and B. Ruddick, 1995: Double-diffusive interleaving: The influence of nonconstant diffusivities. J. Phys. Oceanogr., 25 , 348358.

    • Search Google Scholar
    • Export Citation
  • Walsh, D., . 1998: Nonlinear equilibration of thermohaline intrusions. J. Phys. Oceanogr., 28 , 10431070.

  • Zhang, J., R. W. Schmitt, and R. X. Huang, 1998: Sensitivity of the GFDL Modular Ocean Model to parameterization of double-diffusive processes. J. Phys. Oceanogr., 28 , 589605.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 188 33 2
PDF Downloads 79 34 4

Intrusions in Double-Diffusively Stable Arctic Waters: Evidence for Differential Mixing?

View More View Less
  • 1 Institute of Ocean Sciences, Sidney, British Columbia, Canada
Restricted access

Abstract

Intrusions like those observed in double-diffusively stable regions of the Arctic Ocean can grow from uniform ambient temperature and salinity gradients if diapycnal mixing of these two components differs. Assuming this to be the driving mechanism, the observed 40–60 m intrusion heights constrain the turbulent diffusivity for heat to be less than about 0.01 cm2 s−1 and the salt-to-heat turbulent diffusivity ratio to be greater than about 0.6 if the diffusivities are constant. Observations indicate that the intrusions slope across isopycnals in a sense that is consistent with such a scenario, although the along-intrusion density ratio is greater than that predicted by linear theory for the fastest-growing intrusions. Numerical solutions for growing intrusions resemble observed temperature and salinity profiles.

Corresponding author address: William Merryfield, Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada, University of Victoria, P.O. Box 1700, Victoria, BC V8W 2Y2, Canada. Email: Bill.Merryfield@ec.gc.ca

Abstract

Intrusions like those observed in double-diffusively stable regions of the Arctic Ocean can grow from uniform ambient temperature and salinity gradients if diapycnal mixing of these two components differs. Assuming this to be the driving mechanism, the observed 40–60 m intrusion heights constrain the turbulent diffusivity for heat to be less than about 0.01 cm2 s−1 and the salt-to-heat turbulent diffusivity ratio to be greater than about 0.6 if the diffusivities are constant. Observations indicate that the intrusions slope across isopycnals in a sense that is consistent with such a scenario, although the along-intrusion density ratio is greater than that predicted by linear theory for the fastest-growing intrusions. Numerical solutions for growing intrusions resemble observed temperature and salinity profiles.

Corresponding author address: William Merryfield, Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada, University of Victoria, P.O. Box 1700, Victoria, BC V8W 2Y2, Canada. Email: Bill.Merryfield@ec.gc.ca

Save