Eulerian and Eddy-Induced Meridional Overturning Circulations in the Tropics

James C. McWilliams National Center for Atmospheric Research, Boulder, Colorado, and Department of Atmospheric Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
and
Gokhan Danabasoglu National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gokhan Danabasoglu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Inspired by recent measurements of the eddy-induced Meridional Overturning Circulation in the tropical North Pacific Ocean by Roemmich and Gilson, the authors analyze an oceanic general circulation model for its Eulerian and eddy-induced Meridional Overturning Circulations throughout the Tropics. The model representation for the mesoscale eddy-induced circulation is the parameterization by Gent and McWilliams, and there are also rectified contributions to the time-mean overturning circulation due to seasonal and interannual fluctuations. The eddy-induced circulation is similar in all tropical basins. It has a strength of about 10% of the Eulerian (mainly Ekman) circulation, and its contribution to the meridional heat flux is a similar fraction. The pattern of the meridional streamfunction is one of double cells in the vertical and antisymmetry about the equator. Near the equator there is downwelling above the undercurrent and upwelling below, with the return circulations closed within the upper 250 m and ±5° latitude. Away from the equator in each basin, there are overturning cells with flow in the opposite directions to those nearest the equator, which reach deeper into and through the main pycnocline as well as poleward into the subtropics. Similar to the wind-driven Eulerian Meridional Overturning Circulation, the seasonal cycle in the eddy-induced circulation has a magnitude comparable to the time-mean circulation, although for an entirely different dynamical reason associated with seasonal changes in the buoyancy field that are primarily diabatic. There is also a circulation anomaly during the 1997/98 El Niño–Southern Oscillation event that nearly cancels the time-mean, counterrotating, eddy-induced cells nearest the equator and surface. The rather good agreement between the measurements and the model solution gives support to the theory underlying the parameterization of eddy-induced circulation, and it indicates that the associated eddy transport coefficients are larger in the Tropics (i.e., ∼2 × 103 m2 s−1) than in middle and high latitudes.

Corresponding author address: Dr. James C. McWilliams, Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, CA 90095-1565. Email: jcm@atmos.ucla.edu

Abstract

Inspired by recent measurements of the eddy-induced Meridional Overturning Circulation in the tropical North Pacific Ocean by Roemmich and Gilson, the authors analyze an oceanic general circulation model for its Eulerian and eddy-induced Meridional Overturning Circulations throughout the Tropics. The model representation for the mesoscale eddy-induced circulation is the parameterization by Gent and McWilliams, and there are also rectified contributions to the time-mean overturning circulation due to seasonal and interannual fluctuations. The eddy-induced circulation is similar in all tropical basins. It has a strength of about 10% of the Eulerian (mainly Ekman) circulation, and its contribution to the meridional heat flux is a similar fraction. The pattern of the meridional streamfunction is one of double cells in the vertical and antisymmetry about the equator. Near the equator there is downwelling above the undercurrent and upwelling below, with the return circulations closed within the upper 250 m and ±5° latitude. Away from the equator in each basin, there are overturning cells with flow in the opposite directions to those nearest the equator, which reach deeper into and through the main pycnocline as well as poleward into the subtropics. Similar to the wind-driven Eulerian Meridional Overturning Circulation, the seasonal cycle in the eddy-induced circulation has a magnitude comparable to the time-mean circulation, although for an entirely different dynamical reason associated with seasonal changes in the buoyancy field that are primarily diabatic. There is also a circulation anomaly during the 1997/98 El Niño–Southern Oscillation event that nearly cancels the time-mean, counterrotating, eddy-induced cells nearest the equator and surface. The rather good agreement between the measurements and the model solution gives support to the theory underlying the parameterization of eddy-induced circulation, and it indicates that the associated eddy transport coefficients are larger in the Tropics (i.e., ∼2 × 103 m2 s−1) than in middle and high latitudes.

Corresponding author address: Dr. James C. McWilliams, Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, CA 90095-1565. Email: jcm@atmos.ucla.edu

Save
  • Bauer, S., M. S. Swenson, A. Griffa, A. J. Mariano, and K. Owens, 1998: Eddy-mean flow decomposition and eddy-diffusivity estimates in the tropical Pacific Ocean: 1. Methodology. J. Geophys. Res., 103 , 3085530871.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., and P. Herrmann, 1994: Annual cycle of poleward heat transport in the ocean: Results from high-resolution modeling of the North and Equatorial Atlantic. J. Phys. Oceanogr., 24 , 91107.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., W. R. Holland, F. O. Bryan, G. Danabasoglu, and J. C. McWilliams, 1995: An overlooked problem in model simulations of the thermohaline circulation and heat transport in the Atlantic Ocean. J. Climate, 8 , 515523.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1982: Seasonal variation in meridional overturning and poleward heat transport in the Atlantic and Pacific Oceans: A model study. J. Mar. Res., 40 , (Suppl.),. 3953.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., J. K. Dukowicz, and R. D. Smith, 1999: On the mixing coefficient in the parameterization of bolus velocity. J. Phys. Oceanogr., 29 , 24422456.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and E. C. Brady, 1985: Diagnostic model of the three-dimensional circulation in the upper equatorial Pacific Ocean. J. Phys. Oceanogr., 15 , 12551273.

    • Search Google Scholar
    • Export Citation
  • Carton, J., J. Wang, and M. Rienecker, 2000: Ocean climate and heat in perspective: An ocean reanalysis project. U.S. WOCE Office, Dept. of Oceanogr., Texas A&M University Rep. 12, 36–39.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and J. C. McWilliams, 1995: Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J. Climate, 8 , 29672987.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and P. R. Gent, 1994: The role of mesoscale tracer transports in the global ocean circulation. Science, 264 , 11231126.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gent, P. R., . 1996: Eliassen–Palm fluxes and the momentum equations in non-eddy-resolving ocean circulation models. J. Phys. Oceanogr., 26 , 25402546.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25 , 463474.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., F. O. Bryan, G. Danabasoglu, S. C. Doney, W. R. Holland, W. G. Large, and J. C. McWilliams, 1998: The NCAR Climate System Model global ocean component. J. Climate, 11 , 12871306.

    • Search Google Scholar
    • Export Citation
  • Gilson, J., D. Roemmich, B. Cornuelle, and L-L. Fu, 1998: Relationship of TOPEX/Poseidon altimetric height to steric height and circulation in the North Pacific. J. Geophys. Res., 103 , 2794727965.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., G. P. de Vries, and J. van Oldenborgh, 2001: Do tropical cells ventilate the Indo-Pacific equatorial thermocline? Geophys. Res. Lett., 28 , 17631766.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2000: The dynamics of ocean heat transport variability. Int. WOCE Newslett., 38 , 79.

  • Khatiwala, S., and M. Visbeck, 2000: An estimate of the eddy-induced circulation in the Labrador Sea. Geophys. Res. Lett., 27 , 22772280.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., and J. Marotzke, 2000: Meridional heat transport by the subtropical cell. J. Phys. Oceanogr., 30 , 696705.

  • Krauss, W., and C. Böning, 1987: Lagrangian properties of eddy fields in the northern North Atlantic as deduced from satellite-tracked buoys. J. Mar. Res., 45 , 259291.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27 , 24182447.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, P. R. Gent, and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31 , 518536.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and J. Marotzke, 1997: Inferring meridional mass and heat transports of the Indian Ocean by fitting a general circulation model to climatological data. J. Geophys. Res., 102 , 1058510602.

    • Search Google Scholar
    • Export Citation
  • Lee, T., . 1998: Seasonal cycle of meridional overturning and heat transport of the Indian Ocean. J. Phys. Oceanogr., 28 , 923943.

  • McCreary, J., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24 , 466497.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., G. Danabasoglu, and P. R. Gent, 1996: Tracer budgets in the Warm Water Sphere. Tellus, 48A , 179192.

  • Nakano, H., and N. Suginohara, 2002: Effects of bottom boundary layer parameterization on reproducing deep and bottom waters in a World Ocean model. J. Phys. Oceanogr, 32 , 12091227.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2001: Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability? J. Phys. Oceanogr., 31 , 675688.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., B. Cornuelle, and R. Weller, 2001: The mean and time-varying meridional transport of heat at the tropical/subtropical boundary of the North Pacific Ocean. J. Geophys. Res., 106 , 89578970.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28 , 727739.

  • Sundermeyer, M., and J. Price, 1998: Lateral mixing and the North Atlantic Tracer Release Experiment: Observations and numerical simulations of Lagrangian particles and a passive tracer. J. Geophys. Res., 103 , 2148121497.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78 , 27712777.

  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Trenberth, K. E., W. G. Large, and J. G. Olson, 1990: The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr., 20 , 17421760.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2002: Interannual variations in the atmospheric heat budget. J. Geophys. Res, in press.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27 , 381402.

    • Search Google Scholar
    • Export Citation
  • Wüst, G., 1949: Über die Zweiteilung der Hydrosphäre. Dtsch. Hydrogr. Z., 2 , 218225.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 394 87 12
PDF Downloads 186 56 4