• Barnier, B., L. Hua, and C. Le Provost, 1991: On the catalytic role of high baroclinic modes in eddy-driven large scale circulation. J. Phys. Oceanogr., 21 , 976997.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., L. Siefridt, and P. Marchesiello, 1995: Surface thermal boundary condition for a global ocean circulation model from a three-year climatology of ECMWF analyses. J. Mar. Syst., 6 , 363380.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., C. W. Böning, C. Köberle, and J. Willebrand, 1994: Effects of increased horizontal resolution in a simulation of the North Atlantic Ocean. J. Phys. Oceanogr., 24 , 326344.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23 , 13631388.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., and R. Budich, 1992: Eddy dynamics in a primitive equation model: Sensitivity to horizontal resolution and friction. J. Phys. Oceanogr., 22 , 361381.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., W. R. Holland, F. O. Bryan, G. Danabasoglu, and J. C. McWilliams, 1995: An overlooked problem in model simulations of the thermohaline circulation and heat transport in the Atlantic Ocean. J. Climate, 8 , 515523.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., and W. R. Holland, 1989: A high resolution simulation of the wind- and thermohaline-driven circulation in the North Atlantic Ocean. Parameterization of Small-Scale Processes, P. Müller and D. Henderson, Eds., Hawaii Institute of Geophysics, Manoa, 99–115.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1986: Poleward buoyancy transport in the ocean and mesoscale eddies. J. Phys. Oceanogr., 16 , 927933.

  • Chao, Y., A. Gangopadhyay, F. O. Bryan, and W. R. Holland, 1996: Modeling the Gulf Stream: How far from reality? Geophys. Res. Lett., 23 , 31553158.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., C. C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Döscher, R., C. W. Böning, and P. Herrmann, 1994: Response of circulation and heat transport in the North Atlantic to changes in thermohaline forcing in northern latitudes: A model study. J. Phys. Oceanogr., 24 , 23062320.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S. S., 1994: Sensitivity of eddy-induced heat transport to diabatic forcing. J. Geophys. Res., 99 , 1848118499.

  • Ferry, N., G. Reverdin, and A. Oschlies, 2000: Seasonal sea level variability in the North Atlantic. J. Geophys. Res., 105 , 63076326.

    • Search Google Scholar
    • Export Citation
  • Gaspar, P., Y. Gregoris, and J-M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and Long-Term Upper Ocean Study site. J. Geophys. Res., 95 , 1617916193.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25 , 463474.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Kallberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Re-analysis Project Report Series 1, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28 , 634658.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1 , 241248.

  • Jakob, C., 1999: Cloud cover in the ECMWF reanalysis. J. Climate, 12 , 947959.

  • Jia, Y., 2000: The formation of the Azores Current due to Mediterranean overflow in a modeling study of the North Atlantic. J. Phys. Oceanogr., 30 , 23422358.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., T. J. Shay, J. M. Bane, and D. R. Watts, 1995: Gulf Stream structure, transport, and recirculation near 68°W. J. Geophys. Res., 100 , 817838.

    • Search Google Scholar
    • Export Citation
  • Koeve, W., 2001: Wintertime nutrients in the North Atlantic—New approaches and implications for new production estimates. Mar. Chem., 74 , 245260.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364 , 701703.

    • Search Google Scholar
    • Export Citation
  • Legg, S., J. McWilliams, and J. Gao, 1998: Localization of deep ocean convection by a mesoscale eddy. J. Phys. Oceanogr., 28 , 944970.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., and F. Ogor, 1998: ERS-1/2 orbit error improvement using TOPEX/Poseidon: The 2 cm challenge. J. Geophys. Res., 103 , 80458057.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: Am improved mapping method of multi-satellite altimeter data. J. Atmos. Oceanic Technol., 15 , 522534.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Macdonald, A. M., 1998: The global ocean circulation: A hydrographic estimate and regional analysis. Progress in Oceanography, Vol. 41, Pergamon, 281–382.

    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J. Jr,, and A. R. Robinson, 1997: Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. I, 44 , 14271450.

    • Search Google Scholar
    • Export Citation
  • Michaels, A. F., and A. H. Knap, 1996: Overview of the U.S. JGOFS Bermuda Atlantic Time-series Study and the Hydrostation S program. Deep-Sea Res. II, 43 , 157198.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., and J. W. Zhang, 2000: Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange. J. Geophys. Res., 105 , 2185121868.

    • Search Google Scholar
    • Export Citation
  • Oschlies, A., and V. Garçon, 1998: Eddy induced enhancement of primary production in a model of the North Atlantic Ocean. Nature, 394 , 266269.

    • Search Google Scholar
    • Export Citation
  • Oschlies, A., . 1999: An eddy-permitting coupled physical-biological model of the North Atlantic. 1. Sensitivity to advection numerics and mixed layer physics. Global Biogeochem. Cycles, 13 , 135160.

    • Search Google Scholar
    • Export Citation
  • Oschlies, A., W. Koeve, and V. Garçon, 2000: An eddy-permitting coupled physical-biological model of the North Atlantic. Part II: Ecosystem dynamics and comparison with satellite and JGOFS local studies data. Global Biogeochem. Cycles, 14 , 499523.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., E. P. Chassignet, and C. G. H. Rooth, 2001: On the connection between Mediterranean outflow and the Azores Current. J. Phys. Oceanogr., 31 , 461480.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R., K. Dixon, and A. Rosati, 1991: The GFDL modular ocean model users guide, version 1. GFDL Ocean Group Tech. Rep. 2, 376 pp.

    • Search Google Scholar
    • Export Citation
  • Paiva, A. M., J. T. Hargrove, E. P. Chassignet, and R. Bleck, 1999: Turbulent behavior of a fine mesh (1/12 degrees) numerical simulation of the North Atlantic. J. Mar. Syst., 21 , 307320.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7 , 952956.

  • Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer-Verlag, 624 pp.

  • Reid, R. O., B. A. Elliot, and D. B. Olson, 1981: Available potential energy: A clarification. J. Phys. Oceanogr., 11 , 1529.

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analysis using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Roberts, M., and D. Marshall, 1998: Do we require adiabatic dissipation schemes in eddy-resolving ocean models? J. Phys. Oceanogr., 28 , 20502063.

    • Search Google Scholar
    • Export Citation
  • Schartau, M., 2001: Data assimilation studies of marine, nitrogen based, ecosystem models in the North Atlantic Ocean. Ph.D. thesis, University of Kiel, 128 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr., 30 , 15321561.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and C. W. Böning, 1992: Mesoscale varibility in the Atlantic Ocean from GEOSAT Altimetry and WOCE high resolution numerical modeling. J. Phys. Oceanogr., 22 , 732752.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., 1992: Kinetic energy analysis of an eddy resolving, primitive equation model of the North Atlantic. J. Geophys. Res., 97 , 687701.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. M. Carton, and D. P. Stepaniak, 2001: The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Climate Dyn., 17 , 259276.

    • Search Google Scholar
    • Export Citation
  • Willebrand, J., B. Barnier, C. Böning, C. Dieterich, P. D. Killworth, C. LeProvost, Y. Jia, J-M. Molines, and A. L. New, 2001: Circulation characteristics in three eddy-permitting models of the North Atlantic. Progress in Oceanography, Vol. 48, Pergamon, 123–161.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 301 76 4
PDF Downloads 120 38 1

Improved Representation of Upper-Ocean Dynamics and Mixed Layer Depths in a Model of the North Atlantic on Switching from Eddy-Permitting to Eddy-Resolving Grid Resolution

Andreas OschliesInstitut für Meereskunde an der Universität Kiel, Kiel, Germany

Search for other papers by Andreas Oschlies in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two configurations of a primitive-equation model of the North Atlantic are analyzed with respect to the simulated cycling of energy, mass, and heat in the upper ocean. One model is eddy-permitting (1/3° horizontal resolution), the other one is eddy-resolving (1/9° resolution), with both models using identical topographies and identical forcing fields at the surface and lateral boundaries. Besides showing some improvement in the simulated mean circulation and heat budgets, the eddy-resolving model reaches good agreement with satellite altimeter measurements of sea surface height variability. An unexpected finding of the model intercomparison is that simulated winter mixed layer depths in mid and high latitudes turn out to be systematically shallower by some 50 to 500 m in the higher resolution run, thereby agreeing better with observations than the 1/3° model results. This model improvement is related to enhanced levels of baroclinic instability leading to a decrease in potential energy and an associated increase in stratification. In the high-resolution model, shear-induced tilting of lateral density gradients generates stratification within the mixed layer itself, at a rate sufficient to set off an average surface heat loss of 5 W m–2 in mid and high latitudes. Although this is small compared to present uncertainties in surface heat fluxes, the resulting reduction in mixed layer depths may be important for an accurate simulation of water mass formation, air–sea gas exchange, and marine biological production. With traditional formulations of mixed layer physics assuming that properties are set by purely vertical mixing, and parameterizations of lateral subgrid-scale mixing often being tapered to zero in the mixed layer, present mixing schemes would have to be modified in order to account for eddy-induced generation of stratification in the surface mixed layer in noneddy-resolving ocean models.

Corresponding author address: Dr. Andreas Oschlies, Institut für Meereskunde an der Universität Kiel, Dusternbrooker Weg 20, Kiel 24105, Germany. Email: aoschlies@ifm.uni-kiel.de

Abstract

Two configurations of a primitive-equation model of the North Atlantic are analyzed with respect to the simulated cycling of energy, mass, and heat in the upper ocean. One model is eddy-permitting (1/3° horizontal resolution), the other one is eddy-resolving (1/9° resolution), with both models using identical topographies and identical forcing fields at the surface and lateral boundaries. Besides showing some improvement in the simulated mean circulation and heat budgets, the eddy-resolving model reaches good agreement with satellite altimeter measurements of sea surface height variability. An unexpected finding of the model intercomparison is that simulated winter mixed layer depths in mid and high latitudes turn out to be systematically shallower by some 50 to 500 m in the higher resolution run, thereby agreeing better with observations than the 1/3° model results. This model improvement is related to enhanced levels of baroclinic instability leading to a decrease in potential energy and an associated increase in stratification. In the high-resolution model, shear-induced tilting of lateral density gradients generates stratification within the mixed layer itself, at a rate sufficient to set off an average surface heat loss of 5 W m–2 in mid and high latitudes. Although this is small compared to present uncertainties in surface heat fluxes, the resulting reduction in mixed layer depths may be important for an accurate simulation of water mass formation, air–sea gas exchange, and marine biological production. With traditional formulations of mixed layer physics assuming that properties are set by purely vertical mixing, and parameterizations of lateral subgrid-scale mixing often being tapered to zero in the mixed layer, present mixing schemes would have to be modified in order to account for eddy-induced generation of stratification in the surface mixed layer in noneddy-resolving ocean models.

Corresponding author address: Dr. Andreas Oschlies, Institut für Meereskunde an der Universität Kiel, Dusternbrooker Weg 20, Kiel 24105, Germany. Email: aoschlies@ifm.uni-kiel.de

Save