• Frankignoul, C., and P. Müller, 1979: Quasi-geostrophic response of an infinite β-plane ocean to stochastic forcing by the atmosphere. J. Phys. Oceanogr., 9 , 104127.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind stress forcing. J. Phys. Oceanogr., 27 , 15331546.

    • Search Google Scholar
    • Export Citation
  • Gradshteyn, I. S., and I. M. Ryzhik, 1965: Table of Integral Series and Products. Academic Press, 1086 pp.

  • Herbaut, C., J. Sirven, and S. Février, 2002: Response of a simplified oceanic general circulation model to idealized NAO-like stochastic forcing. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3d ed., International Geophysics Series. Vol. 48, Academic Press, 511 pp.

  • Jin, F. F., 1997: A theory of interdecadal climate variability of the North Pacific ocean–atmosphere system. J. Climate, 10 , 18211835.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., and P. Robbins, 1996: The long-term hydrographic record at Bermuda. J. Phys. Oceanogr., 26 , 31213131.

  • Large, W. G., W. R. Holland, and J. C. Evans, 1991: Quasigeostrophic ocean response to real wind forcing: The effects of temporal smoothing. J. Phys. Oceanogr., 21 , 9981017.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1989: Interpentadal variability of temperature and salinity at intermediate depths of the North Atlantic Ocean, 1970–1974 versus 1955–1959. J. Geophys. Res., 94 , 60916131.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelmn, and C. Heisey, 1997: A finite volume incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 , 57535766.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., W. Miao, and P. Müller, 1997: Propagation and decay of forced and free baroclinic rossby waves in off-equatorial oceans. J. Phys. Oceanogr., 27 , 24052417.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a β-plane. J. Fluid Mech., 69 , 417443.

  • Sirven, J., and C. Frankignoul, 2000: Variability of the thermocline due to the sudden change in the Ekman pumping. J. Phys. Oceanogr., 30 , 17761789.

    • Search Google Scholar
    • Export Citation
  • Sturges, W., and B. G. Hong, 1995: Wind forcing of the Atlantic thermocline along 32°N at low frequencies. J. Phys. Oceanogr., 25 , 17061715.

    • Search Google Scholar
    • Export Citation
  • von Storch, J. S., V. V. Kharin, U. Cubasch, G. C. Hegerl, D. Schriever, H. von Storch, and E. Zorita, 1997: A description of a 1260-year control integration with the coupled ECHAM1/LSG general circulation model. Climate Dyn., 10 , 15251543.

    • Search Google Scholar
    • Export Citation
  • von Storch, J. S., P. Müller, and E. Bauer, 2001: Climate variability in millenium integrations with coupled atmosphere ocean GCMs: A spectral view. Climate Dyn., 10 , 15251543.

    • Search Google Scholar
    • Export Citation
  • Zorita, E., and C. Frankignoul, 1997: Modes of the North Atlantic decadal variability in the ECHAM1/LSG coupled ocean–atmosphere general circulation model. J. Climate, 10 , 183200.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 137 19 2
PDF Downloads 10 4 1

Spectrum of Wind-Driven Baroclinic Fluctuations of the Ocean in the Midlatitudes

J. SirvenLaboratoire d'Océanographie Dynamique et de Climatologie, CNRS/ORSTOM/Université Pierre et Marie Curie, Paris, France

Search for other papers by J. Sirven in
Current site
Google Scholar
PubMed
Close
,
C. FrankignoulLaboratoire d'Océanographie Dynamique et de Climatologie, CNRS/ORSTOM/Université Pierre et Marie Curie, Paris, France

Search for other papers by C. Frankignoul in
Current site
Google Scholar
PubMed
Close
,
G. de CoëtlogonLaboratoire d'Océanographie Dynamique et de Climatologie, CNRS/ORSTOM/Université Pierre et Marie Curie, Paris, France

Search for other papers by G. de Coëtlogon in
Current site
Google Scholar
PubMed
Close
, and
V. TaillandierLaboratoire d'Océanographie Dynamique et de Climatologie, CNRS/ORSTOM/Université Pierre et Marie Curie, Paris, France

Search for other papers by V. Taillandier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the midlatitudes, the thermocline depth variations are largely due to Rossby waves of first baroclinic mode forced by stochastic wind stress. The frequency spectrum of this oceanic response is investigated with a simple model, with emphasis on the impact of (i) the horizontal mixing, (ii) the zonal variations of the forcing, and (iii) the nonlinearity due to variations of the Rossby wave celerity in function of the thermocline depth. Horizontal mixing, which acts here as a frequency-dependent Newtonian damping, smoothes the singularities of the spectrum computed in a linear nondissipative case and slightly increases the slope of the spectrum at periods shorter than 10 yr. Considering a wind stress with a continuous spectrum also smoothes the response spectrum and modifies the power at decadal and interdecadal frequency: it alters its dependence on the distance from the eastern boundary. A spectral peak appears when the forcing has a dominant zonal scale, but this peak disappears in more realistic cases. The nonlinearity included in Rossby wave celerity induces energy transfers from decadal frequency to annual frequency, thereby whitening the frequency spectrum at periods ranging from 0.5 to 5 yr. These features lead to a better agreement with GCM simulations and observations.

Corresponding author address: Dr. Jérôme Sirven, Laboratoire d' Océanographie Dynamique et de Climatologie, Université Pierre et Marie Curie, T. 15, étage 2, CC100, 4 Place Jussieu, 75252 Paris Cedex 05, France. Email: js@lodyc.jussieu.fr

Abstract

In the midlatitudes, the thermocline depth variations are largely due to Rossby waves of first baroclinic mode forced by stochastic wind stress. The frequency spectrum of this oceanic response is investigated with a simple model, with emphasis on the impact of (i) the horizontal mixing, (ii) the zonal variations of the forcing, and (iii) the nonlinearity due to variations of the Rossby wave celerity in function of the thermocline depth. Horizontal mixing, which acts here as a frequency-dependent Newtonian damping, smoothes the singularities of the spectrum computed in a linear nondissipative case and slightly increases the slope of the spectrum at periods shorter than 10 yr. Considering a wind stress with a continuous spectrum also smoothes the response spectrum and modifies the power at decadal and interdecadal frequency: it alters its dependence on the distance from the eastern boundary. A spectral peak appears when the forcing has a dominant zonal scale, but this peak disappears in more realistic cases. The nonlinearity included in Rossby wave celerity induces energy transfers from decadal frequency to annual frequency, thereby whitening the frequency spectrum at periods ranging from 0.5 to 5 yr. These features lead to a better agreement with GCM simulations and observations.

Corresponding author address: Dr. Jérôme Sirven, Laboratoire d' Océanographie Dynamique et de Climatologie, Université Pierre et Marie Curie, T. 15, étage 2, CC100, 4 Place Jussieu, 75252 Paris Cedex 05, France. Email: js@lodyc.jussieu.fr

Save