• Baringer, M. O., and R. Molinari, 1999: Atlantic Ocean baroclinic heat flux at 24 to 26°N. Geophys. Res. Lett., 26 , 353356.

  • Barnier, B., L. Siefridt, and P. Marchesiello, 1994: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6 , 363380.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., and H. L. Bryden, 1999: The velocity and vorticity structure of the Agulhas Current at 32S. J. Geophys. Res., 104 , 51515176.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4 , 7989.

  • Bryan, K., 1982: Seasonal variation in meridional overturning and poleward heat transport in the Atlantic and Pacific Oceans: A model study. J. Mar. Res., 40 , 3953.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., 1993: Ocean heat transport across 24 latitude. Interactions Between Global Climate Subsystems: The Legacy of Hann, Geophys. Monogr., Vol. 75, Amer. Geophys. Union, 65–75.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and L. M. Beal, 2001: Role of the Agulhas Current in Indian Ocean circulation and associated heat and freshwater fluxes. Deep-Sea Res., 38 , 18211845.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and S. Imawaki, 2001: Ocean heat transport. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 455–474.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., D. H. Roemmich, and J. A. Church, 1991: Ocean heat transport across 24-degrees-N in the Pacific. Deep-Sea Res., 38 , 297324.

    • Search Google Scholar
    • Export Citation
  • Chong, J. C., J. Sprintall, S. Hautala, W. L. Morawitz, N. A. Bray, and W. Pandoe, 2000: Shallow throughflow variability in the outflow straits of Indonesia. Geophys. Res. Lett., 27 , 125128.

    • Search Google Scholar
    • Export Citation
  • Friedrichs, M. A. M., and M. M. Hall, 1993: Deep circulation in the tropical North Atlantic. J. Mar. Res., 51 , 697736.

  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453456.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., C. Wunsch, J. Marotzke, and J. Toole, 2000: Meridional overturning and large-scale circulation of the Indian Ocean. J. Geophys. Res., 105 , 2611726134.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91 , 50375046.

  • Gordon, A. L., S. B. Ma, D. B. Olson, P. Hacker, L. D. Talley, A. Ffield, and D. Wilson, 1997: Advection and diffusion of Indonesian throughflow water within the Indian Ocean south equatorial current. Geophys. Res. Lett., 24 , 28012804.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, and A. L. Ffield, 1999: Throughflow within Makassar Strait. Geophys. Res. Lett., 26 , 33253328.

  • Hall, M. M., and H. L. Bryden, 1982: Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res., 29 , 339359.

  • Harrison, D. E., 1989: On climatological monthly mean wind stress and wind stress curl fields over the World Ocean. J. Climate, 2 , 5770.

    • Search Google Scholar
    • Export Citation
  • Hellerman, S., and M. Rosenstein, 1983: Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr., 13 , 10931104.

    • Search Google Scholar
    • Export Citation
  • Holfort, J., and G. Siedler, 2001: The meridional oceanic transports of heat and nutrients in the South Atlantic. J. Phys. Oceanogr., 31 , 529.

    • Search Google Scholar
    • Export Citation
  • Hsiung, J., 1985: Estimates of global oceanic meridional heat transport. J. Phys. Oceanogr., 15 , 14051413.

  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39 , 385412.

  • Keith, D. W., 1995: Meridional energy transport: Uncertainty in zonal means. Tellus, 47A , 3044.

  • Koltermann, K. P., A. V. Sokov, V. P. Tereschenkov, S. A. Dobroliubov, K. Lorbacher, and A. Sy, 1999: Decadal changes in the thermohaline circulation of the North Atlantic. Deep-Sea Res., 46 , 109138.

    • Search Google Scholar
    • Export Citation
  • Lavin, A., H. L. Bryden, and G. Parilla, 1998: Meridional transport and heat flux variations in the subtropical North Atlantic. Global Atmos. Ocean Syst., 6 , 231241.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Luyten, J. L., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13 , 292309.

  • Macdonald, A. M., 1993: Property fluxes at 30°S and their implications for the Pacific–Indian throughflow and the global heat budget. J. Geophys. Res., 98 , 68516868.

    • Search Google Scholar
    • Export Citation
  • Macdonald, A. M., 1998: The global ocean circulation: A hydrographic estimate and regional analysis. Progress in Oceanography, Vol. 41, Pergamon, 281–382.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1982: The subtropical recirculation of mode waters. J. Mar. Res., 40 , (Suppl.),. 427474.

  • Orsi, A. H., G. C. Johnson, and J. L. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Progress in Oceanography, Vol. 43, Pergamon, 55–109.

    • Search Google Scholar
    • Export Citation
  • Parrilla, G., A. Lavin, H. Bryden, M. Garcia, and R. Millard, 1994: Rising temperatures in the subtropical North Atlantic Ocean over the past 35 years. Nature, 369 , 4851.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1994: On the total geostrophic circulation of the North Atlantic Ocean: Flow patterns, tracers and transports. Progress in Oceanography, Vol. 33, Pergamon, 1–92.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1997: On the total geostrophic circulation of the Pacific Ocean: Flow patterns, tracers and transports. Progress in Oceanography, Vol. 39, Pergamon, 263–352.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 2002: On the total geostrophic circulation of the Indian Ocean: Flow patterns, tracers and transports. Progress in Oceanography, in press.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S., 1991: South Atlantic interbasin exchange. J. Geophys. Res., 96 , 26752692.

  • Roach, A. T., K. Aagaard, C. H. Pease, S. A. Salo, T. Weingartner, V. Pavlov, and M. Kulakov, 1995: Direct measurements of transport and water properties through the Bering Strait. J. Geophys. Res., 100 , 1844318457.

    • Search Google Scholar
    • Export Citation
  • Robbins, P. E., and J. M. Toole, 1997: The dissolved silica budget as a constraint on the meridional overturning circulation of the Indian Ocean. Deep-Sea Res., 44 , 879906.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., 1980: Estimation of meridional heat flux in the North Atlantic by inverse methods. J. Phys. Oceanogr., 10 , 19721983.

  • Roemmich, D., and C. Wunsch, 1985: Two transatlantic sections: Meridional circulation and heat flux in the subtropical North Atlantic Ocean. Deep-Sea Res., 32 , 619664.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and T. McCallister, 1989: Large scale circulation of the North Pacific Ocean. Progress in Oceanography, Vol. 22, Pergamon, 171–204.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Gilson, B. Cornuelle, and R. Weller, 2001: Mean time-varying meridional transport of heat at the tropical subtropical boundary of the North Pacific Ocean. J. Geophys. Res., 106 , 89578970.

    • Search Google Scholar
    • Export Citation
  • Sato, O. T., and T. Rossby, 2000: Seasonal and low-frequency variability of the meridional heat flux at 36°N in the North Atlantic. J. Phys. Oceanogr., 30 , 606621.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., 1995: On the interbasin-scale thermohaline circulation. Rev. Geophys., 33 , 151173.

  • Sloyan, B. M., and S. R. Rintoul, 2001a: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31 , 143173.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001b: Circulation, renewal, and modification of Antarctic mode and intermediate water. J. Phys. Oceanogr., 31 , 10051030.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1984: Meridional heat transport in the Pacific Ocean. J. Phys. Oceanogr., 14 , 231241.

  • Talley, L. D., 1996: Antarctic Intermediate Water in the South Atlantic. The South Atlantic: Present and Past Circulation, G. Wefer et al., Eds., Springer-Verlag, 219–238.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1999: Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr., Vol. 112, Amer. Geophys. Union, 1–22.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., and B. A. Warren, 1993: A hydrographic section across the subtropical South Indian Ocean. Deep-Sea Res., 40 , 19732019.

  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Trenberth, K. E., J. M. Caron, and D. P. Stepaniak, 2001: The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Climate Dyn., 17 , 259276.

    • Search Google Scholar
    • Export Citation
  • Tsimplis, M. N., H. L. Bryden, and S. Bacon, 1998: The circulation of the subtropical South Pacific derived from hydrographic data. J. Geophys. Res., 103 , 2144321468.

    • Search Google Scholar
    • Export Citation
  • Vranes, K., A. L. Gordon, and A. Ffield, 2002: The heat transport of the Indonesian Throughflow and implications for the Indian Ocean heat budget. Deep-Sea Res., 49B , 13911410.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., 2001: Ocean transport of fresh water. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 475–488.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., R. W. Schmitt, H. L. Bryden, and A. Stigebrandt, 1992: Transport of freshwater by the oceans. J. Phys. Oceanogr., 22 , 155162.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., J. M. Toole, H. L. Bryden, R. A. Fine, W. J. Jenkins, and J. L. Bullister, 1996: The water masses and circulation at 10°N in the Pacific. Deep-Sea Res., 43 , 501544.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., J. M. Toole, and R. Davis, 2001: Revisiting the South Pacific subtropical circulation: A synthesis of World Ocean Circulation Experiment observations along 32°S. J. Geophys. Res., 106 , 1948119514.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., D. Hu, and B. Grant, 1983: Mass, heat, salt and nutrient fluxes in the South Pacific Ocean. J. Phys. Oceanogr., 13 , 725753.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and L. D. Talley, 1992: Shallow salinity minima in the North Pacific. J. Phys. Oceanogr., 22 , 13021316.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 591 271 33
PDF Downloads 453 227 20

Shallow, Intermediate, and Deep Overturning Components of the Global Heat Budget

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Restricted access

Abstract

The ocean's overturning circulation and associated heat transport are divided into contributions based on water mass ventilation from 1) shallow overturning within the wind-driven subtropical gyres to the base of the thermocline, 2) overturning into the intermediate depth layer (500–2000 m) in the North Atlantic and North Pacific, and 3) overturning into the deep layers in the North Atlantic (Nordic Seas overflows) and around Antarctica. The contribution to South Pacific and Indian heat transport from the Indonesian Throughflow is separated from that of the subtropical gyres and is small. A shallow overturning heat transport of 0.6 PW dominates the 0.8-PW total heat transport at 24°N in the North Pacific but carries only 0.1–0.4 PW of the 1.3-PW total in the North Atlantic at 24°N. Shallow overturning heat transports in the Southern Hemisphere are also poleward: −0.2 to −0.3 PW southward across 30°S in each of the Pacific and Indian Oceans but only −0.1 PW in the South Atlantic. Intermediate water formation of 2 and 7 Sv (1 Sv ≡ 106 m3 s−1) carries 0.1 and 0.4 PW in the North Pacific and Atlantic, respectively, while North Atlantic Deep Water formation of 19 Sv carries 0.6 PW. Because of the small temperature differences between Northern Hemisphere deep waters that feed the colder Antarctic Bottom Water (Lower Circumpolar Deep Water), the formation of 22 Sv of dense Antarctic waters is associated with a heat transport of only −0.14 PW across 30°S (all oceans combined). Upwelling of Circumpolar Deep Water north of 30°S in the Indian (14 Sv) and South Pacific (14 Sv) carries −0.2 PW in each ocean.

Corresponding author address: Lynne D. Talley, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0230. Email: ltalley@ucsd.edu

Abstract

The ocean's overturning circulation and associated heat transport are divided into contributions based on water mass ventilation from 1) shallow overturning within the wind-driven subtropical gyres to the base of the thermocline, 2) overturning into the intermediate depth layer (500–2000 m) in the North Atlantic and North Pacific, and 3) overturning into the deep layers in the North Atlantic (Nordic Seas overflows) and around Antarctica. The contribution to South Pacific and Indian heat transport from the Indonesian Throughflow is separated from that of the subtropical gyres and is small. A shallow overturning heat transport of 0.6 PW dominates the 0.8-PW total heat transport at 24°N in the North Pacific but carries only 0.1–0.4 PW of the 1.3-PW total in the North Atlantic at 24°N. Shallow overturning heat transports in the Southern Hemisphere are also poleward: −0.2 to −0.3 PW southward across 30°S in each of the Pacific and Indian Oceans but only −0.1 PW in the South Atlantic. Intermediate water formation of 2 and 7 Sv (1 Sv ≡ 106 m3 s−1) carries 0.1 and 0.4 PW in the North Pacific and Atlantic, respectively, while North Atlantic Deep Water formation of 19 Sv carries 0.6 PW. Because of the small temperature differences between Northern Hemisphere deep waters that feed the colder Antarctic Bottom Water (Lower Circumpolar Deep Water), the formation of 22 Sv of dense Antarctic waters is associated with a heat transport of only −0.14 PW across 30°S (all oceans combined). Upwelling of Circumpolar Deep Water north of 30°S in the Indian (14 Sv) and South Pacific (14 Sv) carries −0.2 PW in each ocean.

Corresponding author address: Lynne D. Talley, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0230. Email: ltalley@ucsd.edu

Save