• Banner, M. L., and I. R. Young, 1994: Modeling spectral dissipation in the evolution of wind waves. Part I: Assessment of existing model performance. J. Phys. Oceanogr., 24 , 15501571.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., A. Babanin, and I. R. Young, 2000: Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr., 30 , 31453160.

    • Search Google Scholar
    • Export Citation
  • Bretschneider, C. L., 1966: Wave generation by wind, deep and shallow water. Estuary and Coastline Hydrodynamics, Eng. Soc. Monogr., McGraw-Hill Book Co., 744 pp.

    • Search Google Scholar
    • Export Citation
  • CERC, 1984: Shore Protection Manual. Vol. 1. U. S. Army Coastal Engineering Research Center, Dept. of the Army Corps of Engineers, 180 pp.

    • Search Google Scholar
    • Export Citation
  • Chen, W., M. L. Banner, E. J. Walsh, J. B. Jensen, and S. Lee, 2001: The Southern Ocean Waves Experiment. Part II: Sea surface response to wind speed and wind stress variations. J. Phys. Oceanogr., 31 , 174198.

    • Search Google Scholar
    • Export Citation
  • Cote, L. J., and Coauthors. 1960: The directional spectrum of a wind-generated sea as determined from data obtained by the Stereo Wave Observation Project. New York University College of Engineering Meteorological Papers, 1–88.

    • Search Google Scholar
    • Export Citation
  • Darbyshire, J., 1959: A further investigation of wind generated waves. Dtsch. Hydrogr. Z., 12 , 113.

  • Davidan, I. N., 1996: New results in wind-wave studies (in Russian). Meteor. Hydrol., 4 , 6572.

  • Donelan, M. A., and W. J. Pierson, 1987: Radar scattering and equilibrium ranges in wind-generated waves with applications to scatterometry. J. Geophys. Res., 92 , 49715029.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, A315. 509562.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., M. Skafel, H. Graber, P. Liu, D. Schwab, and S. Venkatesh, 1992: On the growth rate of wind-generated waves. Atmos.–Ocean, 30 , 457478.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., H. Kawamura, and Y. Toba, 1992: Growth of wind waves with fetch observed by the GEOSAT altimeter in the Japan Sea under winter monsoon. J. Geophys. Res., 97 , 809819.

    • Search Google Scholar
    • Export Citation
  • Ewing, J. A., and A. K. Laing, 1987: Directional spectra of seas near full development. J. Phys. Oceanogr., 17 , 16961706.

  • Forristall, G. Z., 1981: Measurements of a saturation range in ocean wave spectra. J. Geophys. Res., 86 , 80758084.

  • Glazman, R. E., 1994: Surface waves at equilibrium with a steady wind. J. Geophys. Res., 99 (C3) 52495262.

  • Glazman, R. E., and S. H. Pilorz, 1990: Effects of sea maturity on satellite altimeter measurements. J. Geophys. Res., 95 (C3) 25872870.

    • Search Google Scholar
    • Export Citation
  • Hanson, J. L., and O. M. Phillips, 1999: Wind sea growth and dissipation in the open ocean. J. Phys. Oceanogr., 29 , 16331648.

  • Hasselmann, K., and Coauthors,. 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z., 8 , (12); (Suppl. A),. 195.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., D. B. Ross, P. Müller, and W. Sell, 1976: A parametric wave prediction model. J. Phys. Oceanogr., 6 , 200228.

  • Hersbach, H., 1998: Application of the adjoint of the WAM model to inverse wave modeling. J. Geophys. Res., 103 (C5) 1046910487.

  • Holthuijsen, L. H., 1983: Observations of the directional distribution of ocean-wave energy in fetch-limited conditions. J. Phys. Oceanogr., 13 , 191207.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. W. Wang, E. J. Walsh, W. B. Krabill, and R. N. Swift, 2000: Airborne measurements of the wavenumber spectra of ocean surface waves. Part II: Directional distribution. J. Phys. Oceanogr., 30 , 27682787.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., G. J. Komen, and W. J. P. de Voogt, 1987: Friction velocity scaling in wind-wave generation. Bound.-Layer Meteor, 38 , 2935.

    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., 1981: A study of the growth of the wave spectrum with fetch. J. Phys. Oceanogr., 11 , 15031515.

  • Kahma, K. K., and C. J. Calkoen, 1992: Reconciling discrepancies in the observed growth of wind-generated waves. J. Phys. Oceanogr., 22 , 13891405.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kawai, S., K. Okada, and Y. Toba, 1977: Field data support of three-seconds power law and guσ−4 spectral form for growing wind waves. J. Oceanogr. Soc. Japan, 33 , 137150.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S. A., 1962: Applications of the theory of similarity to the analysis of wind-generated wave motion as a stochastic process. Bull. Acad. Sci. USSR Geophys. Ser., 1 , 105117.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S. A., 1973: The Physics of Air–Sea Interaction. Israel Program for Scientific Translations Ltd., 239 pp.

  • Komen, G. J., S. Hasselmann, and K. Hasselmann, 1984: On the existence of a fully-developed wind-sea spectrum. J. Phys. Oceanogr., 14 , 12711285.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. A. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

    • Search Google Scholar
    • Export Citation
  • Lindau, R., 1995: A new Beaufort equivalent scale. Proc. Int. COADS Workshop, Kiel, Germany, Institut für Meereskunde Kiel and NOAA, 232–252.

    • Search Google Scholar
    • Export Citation
  • Liu, P. C., and D. B. Ross, 1980: Airborne measurements of wave growth for stable and unstable atmospheres in Lake Michigan. J. Phys. Oceanogr., 10 , 18421853.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and W. Tang, 1996: Equivalent neutral wind. JPL Publ. 96-17, 8 pp.

  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air–sea exchanges in heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci, 36 , 17221735.

    • Search Google Scholar
    • Export Citation
  • Mitsuyasu, H., F. Tasai, T. Suhara, S. Mizuno, M. Okhuso, T. Honda, and K. Rikiishi, 1975: Observations of the directional spectrum of ocean waves using a cloverleaf buoy. J. Phys. Oceanogr., 5 , 750760.

    • Search Google Scholar
    • Export Citation
  • Moskowitz, L., 1964: Estimates of the power spectrums for fully-developed seas for wind speeds of 20 to 40 knots. J. Geophys. Res., 69 , 51615179.

    • Search Google Scholar
    • Export Citation
  • Moskowitz, L., W. J. Pierson, and E. Mehr, 1962: Wave spectra estimated from wave records obtained by the OWS Weather Explorer and the OWS Weather Reporter. Parts 1, 2 and 3. Tech. Rep., U. S. Naval Oceanographic Office, New York University, approx. 58 pp.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1958: The equilibrium range in the spectrum of wind-generated ocean waves. J. Fluid Mech., 107 , 465485.

  • Pierson, W. J., 1964: The interpretation of wave spectrum in terms of the wind profile instead of the wind measured at a constant height. J. Geophys. Res., 69 , 51915203.

    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of A. A. Kitaigorodskii. J. Geophys. Res., 69 , 51815190.

    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., G. Neumann, and R. James, 1955: Practical methods for observing and forecasting ocean waves by means of wave spectra and statistics. H.O. Publ. 603, U. S. Navy Hydrographic Office, 284 pp.

    • Search Google Scholar
    • Export Citation
  • Resio, D. T., V. R. Swail, R. E. Jensen, and V. J. Cardone, 1999: Wind speed scaling in fully developed seas. J. Phys. Oceanogr., 29 , 18011811.

    • Search Google Scholar
    • Export Citation
  • Ris, R. C., 1997: Spectral modelling of wind waves in coastal areas. Communications on Hydraulic and Geotechnical Engineering, Technical University of Delft Rep. 97-4, 160 pp.

    • Search Google Scholar
    • Export Citation
  • Rodriguez, G., and C. Guedes-Soares, 1999: A criterion for the automatic identification of multimodal sea wave spectra. Appl. Ocean Res., 21 , 329333.

    • Search Google Scholar
    • Export Citation
  • Schneggenburger, C., 1998: Spectral wave modelling with nonlinear dissipation. Ph.D. dissertation, GKSS-Forschungszentrum Geesthacht GmbH, Hamburg, Germany, 117 pp.

    • Search Google Scholar
    • Export Citation
  • Silvester, R., 1974: Coastal Engineering. Vol. 1. Elsevier Scientific Publishing, 457 pp.

  • Smith, S. D., 1980: Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10 , 709726.

  • Sverdrup, H. V., and W. H. Munk, 1947: Wind sea and swell: Theory of relation for forecasting. H. O. Publ. 601, U.S. Navy Hydrographic Office, 44 pp.

    • Search Google Scholar
    • Export Citation
  • SWAMP Group, 1985: Ocean Wave Modeling. Plenum Press, 256 pp.

  • Taylor, P. K., and M. J. Yelland, 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31 , 572590.

    • Search Google Scholar
    • Export Citation
  • Toba, Y., 1973: Local balance in the air–sea boundary process. J. Oceanogr. Soc. Japan, 29 , 209220.

  • Tolman, H. L., 1999: User manual and system documentation of WAVEWATCH-III version 1.18. NOAA/NWS/NCEP/OMB Tech. Note 166, 110 pp.

  • Walsh, E. J., D. W. Hancock III, D. E Hines, R. N. Swift, and J. F Scott, 1989: An observation of the directional wave spectrum evolution from shoreline to fully developed. J. Phys. Oceanogr., 19 , 670690.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1982: Wind-stress coefficients over the sea surface from breeze to hurricane. J. Geophys. Res., 87 (C12) 97049706.

  • Young, I. R., 1986: Probability distribution of spectral integrals. J. Waterw., Ports, Coastal Ocean Eng., 112 , 338341.

  • Young, I. R., 1995: The determination of confidence limits associated with estimates of the spectral peak frequency. Ocean Eng, 22 , 669686.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and L. A. Verhagen, 1996: The growth of fetch-limited waves in water of finite depth. Part I: Total energy and peak frequency. Coastal Eng, 28 , 4778.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 905 504 0
PDF Downloads 814 493 0

Revisiting the Pierson–Moskowitz Asymptotic Limits for Fully Developed Wind Waves

View More View Less
  • 1 School of Mathematics, University of New South Wales, Sydney, New South Wales, Australia
  • | 2 Faculty of Engineering, Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
Restricted access

Abstract

The time-honored topic of fully developed wind seas pioneered by Pierson and Moskowitz is revisited to review the asymptotic evolution limits of integral spectral parameters used by the modeling community in the validation of wind-wave models. Discrepancies are investigated between benchmark asymptotic limits obtained by scaling integral spectral parameters using alternative wind speeds. Using state-of-the-art wind and wave modeling technology, uncertainties in the Pierson–Moskowitz limits due to inhomogeneities in the wind fields and contamination of the original data by crossing seas and swells are also investigated. The resulting reanalyzed database is used to investigate the optimal scaling wind parameter and to refine the levels of the full-development asymptotes of nondimensional integral wave spectral parameters used by the wind-wave modeling community. The results are also discussed in relation to recent advances in quantifying wave-breaking probability of wind seas. The results show that the parameterization of integral spectral parameters and the scaling of nondimensional asymptotes as a function of U10 yields relations consistent with similarity theory. On the other hand, expressing integral spectral parameters and scaling nondimensional asymptotes as a function of u∗ or alternative proposed scaling wind speeds yields relations that do not conform to similarity requirements as convincingly. The reanalyzed spectra are used to investigate parameter values and shapes of analytical functions representing fully developed spectra. These results support an analytical form with a spectral tail proportional to f−4.

Current affiliation: SAIC/GSO at Marine Modeling and Analysis Branch, EMC, NOAA/NCEP, Camp Springs, Maryland

Corresponding author address: Prof. Michael L. Banner, School of Mathematics, University of New South Wales, 2052 Sydney, Australia. Email: m.banner@unsw.edu.au

Abstract

The time-honored topic of fully developed wind seas pioneered by Pierson and Moskowitz is revisited to review the asymptotic evolution limits of integral spectral parameters used by the modeling community in the validation of wind-wave models. Discrepancies are investigated between benchmark asymptotic limits obtained by scaling integral spectral parameters using alternative wind speeds. Using state-of-the-art wind and wave modeling technology, uncertainties in the Pierson–Moskowitz limits due to inhomogeneities in the wind fields and contamination of the original data by crossing seas and swells are also investigated. The resulting reanalyzed database is used to investigate the optimal scaling wind parameter and to refine the levels of the full-development asymptotes of nondimensional integral wave spectral parameters used by the wind-wave modeling community. The results are also discussed in relation to recent advances in quantifying wave-breaking probability of wind seas. The results show that the parameterization of integral spectral parameters and the scaling of nondimensional asymptotes as a function of U10 yields relations consistent with similarity theory. On the other hand, expressing integral spectral parameters and scaling nondimensional asymptotes as a function of u∗ or alternative proposed scaling wind speeds yields relations that do not conform to similarity requirements as convincingly. The reanalyzed spectra are used to investigate parameter values and shapes of analytical functions representing fully developed spectra. These results support an analytical form with a spectral tail proportional to f−4.

Current affiliation: SAIC/GSO at Marine Modeling and Analysis Branch, EMC, NOAA/NCEP, Camp Springs, Maryland

Corresponding author address: Prof. Michael L. Banner, School of Mathematics, University of New South Wales, 2052 Sydney, Australia. Email: m.banner@unsw.edu.au

Save