A Midlatitude–ENSO Teleconnection Mechanism via Baroclinically Unstable Long Rossby Waves

Eli Galanti Environmental Sciences, Weizmann Institute, Rehovot, Israel

Search for other papers by Eli Galanti in
Current site
Google Scholar
PubMed
Close
and
Eli Tziperman Environmental Sciences, Weizmann Institute, Rehovot, Israel

Search for other papers by Eli Tziperman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The possibility of generating decadal ENSO variability via an ocean teleconnection to the midlatitude Pacific is studied. This is done by analyzing the sensitivity of the equatorial stratification to midlatitude processes using an ocean general circulation model, the adjoint method, and a quasigeostrophic normal-mode stability analysis. It is found that, on timescales of 2–15 yr, the equatorial Pacific is most sensitive to midlatitude planetary Rossby waves traveling from the midlatitudes toward the western boundary and then to the equator. Those waves that propagate through baroclinically unstable parts of the subtropical gyre are amplified by the baroclinic instability and therefore dominate the midlatitude signal arriving at the equator. This result implies that decadal variability in the midlatitude Pacific would be efficiently transmitted to the equatorial Pacific from specific areas of the midlatitude Pacific that are baroclinically unstable, such as the near-equatorial edges of the subtropical gyres (15°N and 12°S). The Rossby waves that propagate via the baroclinically unstable areas are of the advective mode type, which follow the gyre circulation to some degree and arrive from as far as 25°N and 30°S in the east Pacific. It is shown that the baroclinic instability amplifying these waves involves critical layers due to the vertical shear of the subtropical gyre circulation, at depths of 150–200 m.

Corresponding author address: Eli Galanti, International Research Institute for Climate Prediction, The Earth Institute at Columbia University, Rm. 202, Monell Bldg., Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964-8000. Email: eli@iri.columbia.edu

Abstract

The possibility of generating decadal ENSO variability via an ocean teleconnection to the midlatitude Pacific is studied. This is done by analyzing the sensitivity of the equatorial stratification to midlatitude processes using an ocean general circulation model, the adjoint method, and a quasigeostrophic normal-mode stability analysis. It is found that, on timescales of 2–15 yr, the equatorial Pacific is most sensitive to midlatitude planetary Rossby waves traveling from the midlatitudes toward the western boundary and then to the equator. Those waves that propagate through baroclinically unstable parts of the subtropical gyre are amplified by the baroclinic instability and therefore dominate the midlatitude signal arriving at the equator. This result implies that decadal variability in the midlatitude Pacific would be efficiently transmitted to the equatorial Pacific from specific areas of the midlatitude Pacific that are baroclinically unstable, such as the near-equatorial edges of the subtropical gyres (15°N and 12°S). The Rossby waves that propagate via the baroclinically unstable areas are of the advective mode type, which follow the gyre circulation to some degree and arrive from as far as 25°N and 30°S in the east Pacific. It is shown that the baroclinic instability amplifying these waves involves critical layers due to the vertical shear of the subtropical gyre circulation, at depths of 150–200 m.

Corresponding author address: Eli Galanti, International Research Institute for Climate Prediction, The Earth Institute at Columbia University, Rm. 202, Monell Bldg., Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964-8000. Email: eli@iri.columbia.edu

Save
  • An, S. I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13 , 20442055.

    • Search Google Scholar
    • Export Citation
  • Barnett, T., D. Pierce, M. Latif, D. Dommenget, and R. Saravanan, 1999: Interdecadal interactions between the tropics and midlatitudes in the pacific basin. Geophys. Res. Lett., 26 (5) 615618.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and M. A. Alexander, 2001: Rossby waves in the tropical north pacific and their role in decadal thermocline variability. J. Phys. Oceanogr., 31 , 34963515.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and M. A. Alexander, 2003: Why are there Rossby wave maxima in the Pacific at 10°S and 13°N? J. Phys. Oceanogr., 33 , 15491563.

    • Search Google Scholar
    • Export Citation
  • Esbensen, S. K., and V. Kushnir, 1981: The heat budget of the global ocean: An atlas based on estimates from surface marine observations. Climate Research Institute Tech. Rep. 29, 27 pp.

    • Search Google Scholar
    • Export Citation
  • Galanti, E., E. Tziperman, M. Harrison, A. Rosati, R. Giering, and Z. Sirkes, 2002: The equatorial thermocline outcropping—A seasonal control on the tropical Pacific ocean–atmosphere instability strength. J. Climate, 15 , 27212739.

    • Search Google Scholar
    • Export Citation
  • Galanti, E., E. Tziperman, M. Harrison, A. Rosati, and Z. Sirkes, 2003: A study of ENSO prediction using a hybrid coupled model and the adjoint method for data assimilation. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Giering, R., cited 1999: Tangent linear and adjoint model compiler. Users manual. [Available online at http://www.autodiff.com/tamc.].

  • Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. ACM Trans. Math. Soft., 24 (4) 437474.

  • Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275 (7) 805807.

    • Search Google Scholar
    • Export Citation
  • Hall, M. C. B., and D. G. Cacuci, 1983: Physical interpretation of the adjoint functions for sensitivity analysis of atmospheric models. J. Atmos. Sci., 40 , 25372546.

    • Search Google Scholar
    • Export Citation
  • Harper, S., 2000: Thermocline ventilation and pathways of tropical–subtropical water mass exchange. Tellus, 52A , 330345.

  • Hazeleger, W., M. Visbeck, M. Cane, A. Karspeck, and N. Naik, 2001: Decadal upper ocean temperature variability in the tropical Pacific. J. Geophys. Res., 106 (C5) 89718988.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 2001: Low-frequency modes of tropical ocean dynamics. J. Climate, 14 , 38743881.

  • Jin, F. F., M. Kimoto, and X. C. Wang, 2001: A model of decadal ocean–atmosphere interaction in the North Pacific basin. Geophys. Res. Lett., 28 (8) 15311534.

    • Search Google Scholar
    • Export Citation
  • Killworth, P., D. Chelton, and R. D. Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27 , 19461966.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., J. P. Mccreary, and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26 (12) 17431746.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Levitus, S. E., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Liu, Z. Y., 1999a: Forced planetary wave response in a thermocline gyre. J. Phys. Oceanogr., 29 , 10361055.

  • Liu, Z. Y., 1999b: Planetary wave modes in the thermocline: Non-Doppler-shift mode, advective mode and green mode. Quart. J. Roy. Meteor. Soc., 125 , 13151339.

    • Search Google Scholar
    • Export Citation
  • Lysne, J., P. Chang, and B. Giese, 1997: Impact of the extratropical Pacific on equatorial variability. Geophys. Res. Lett., 24 (21) 25892592.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., R. Giering, K. Q. Zhang, D. Stammer, C. Hill, and T. Lee, 1999: Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity. J. Geophys. Res., 104 (C12) 2952929547.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415 , 603608.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1981: Internal waves and small scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., The MIT Press, 264–291.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1999: MOM 3.0 Manual, 671 pp. [Available from NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 08542.].

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer-Verlag, 710 pp.

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2001: Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability? J. Phys. Oceanogr., 31 , 675687.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., S. Venzke, A. J. Miller, D. W. Pierce, T. P. Barnett, C. Deser, and M. Latif, 1999: Pacific thermocline bridge revisited. Geophys. Res. Lett., 26 (9) 13291332.

    • Search Google Scholar
    • Export Citation
  • Stricherz, J. N., J. J. O'Brien, and D. M. Legler, 1992: Atlas of Florida State University Tropical Pacific Winds for TOGA 1966–1985. Florida State University, 250 pp.

    • Search Google Scholar
    • Export Citation
  • Stricherz, J. N., D. Legler, and J. J. O'Brien, 1997: Indian Ocean. Vol. III, TOGA Pseudo-Stress Atlas 1985–1994. Florida State University, 155 pp.

    • Search Google Scholar
    • Export Citation
  • Syu, H. H., and J. D. Neelin, 2000: ENSO in a hybrid coupled model. Part I: Sensitivity to physical parameterizations. Climate Dyn., 16 , 1934.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9 (6) 303319.

  • Zhang, R. H., T. Kagimoto, and S. E. Zebiak, 2001: Subduction of decadal North Pacific thermal anomalies in an ocean GCM. Geophys. Res. Lett., 28 (12) 24492452.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 281 70 7
PDF Downloads 161 62 7