Swell Transformation across the Continental Shelf. Part II: Validation of a Spectral Energy Balance Equation

Fabrice Ardhuin Centre Militaire d'Océanographie, Service Hydrographique et Océanographique de la Marine, Brest, France

Search for other papers by Fabrice Ardhuin in
Current site
Google Scholar
PubMed
Close
,
T. H. C. Herbers Department of Oceanography, Naval Postgraduate School, Monterey, California

Search for other papers by T. H. C. Herbers in
Current site
Google Scholar
PubMed
Close
,
P. F. Jessen Department of Oceanography, Naval Postgraduate School, Monterey, California

Search for other papers by P. F. Jessen in
Current site
Google Scholar
PubMed
Close
, and
W. C. O'Reilly Department of Oceanography, Naval Postgraduate School, Monterey, California

Search for other papers by W. C. O'Reilly in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

State-of-the-art parameterizations of the interactions of waves with a sandy bottom are evaluated using extensive field observations of swell evolution across the North Carolina continental shelf and hindcasts performed with the spectral wave prediction model CREST. The spectral energy balance equation, including bottom friction and wave–bottom scattering source terms, was integrated numerically for selected time periods with swell-dominated conditions. Incident wave spectra at the model boundary were estimated from buoy measurements near the shelf break, assuming weak spatial variations in the offshore wave field. The observed strong and variable decay of the significant wave height across the shelf is predicted accurately with an overall scatter index of 0.15. Predicted wave directional properties at the peak frequency also agree well with observations, with a 5° root-mean-square error on the mean direction at the peak frequency and a 0.22 scatter index for the directional spread. Slight modifications are proposed for the laboratory-based empirical constants in the movable bed bottom friction source term, reducing the wave height scatter index to 0.13. A significant negative bias in the predicted directional spread (about −20%) suggests that other wave scattering processes not included in the energy balance equation broaden the wave field near the shore. Other residual errors may be largely the result of neglected spatial variations in the offshore wave conditions and, to a lesser extent, insufficient knowledge of the sediment properties.

Corresponding author address: Dr. Fabrice Ardhuin, EPSHOM/CMO, 13 rue du Chatellier, Brest, Cedex 29609, France. Email: ardhuin@shom.fr

Abstract

State-of-the-art parameterizations of the interactions of waves with a sandy bottom are evaluated using extensive field observations of swell evolution across the North Carolina continental shelf and hindcasts performed with the spectral wave prediction model CREST. The spectral energy balance equation, including bottom friction and wave–bottom scattering source terms, was integrated numerically for selected time periods with swell-dominated conditions. Incident wave spectra at the model boundary were estimated from buoy measurements near the shelf break, assuming weak spatial variations in the offshore wave field. The observed strong and variable decay of the significant wave height across the shelf is predicted accurately with an overall scatter index of 0.15. Predicted wave directional properties at the peak frequency also agree well with observations, with a 5° root-mean-square error on the mean direction at the peak frequency and a 0.22 scatter index for the directional spread. Slight modifications are proposed for the laboratory-based empirical constants in the movable bed bottom friction source term, reducing the wave height scatter index to 0.13. A significant negative bias in the predicted directional spread (about −20%) suggests that other wave scattering processes not included in the energy balance equation broaden the wave field near the shore. Other residual errors may be largely the result of neglected spatial variations in the offshore wave conditions and, to a lesser extent, insufficient knowledge of the sediment properties.

Corresponding author address: Dr. Fabrice Ardhuin, EPSHOM/CMO, 13 rue du Chatellier, Brest, Cedex 29609, France. Email: ardhuin@shom.fr

Save
  • Ardhuin, F., and T. H. C. Herbers, 2002: Bragg scattering of random surface gravity waves by irregular sea bed topography. J. Fluid Mech., 451 , 133.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., T. H. C. Herbers, and W. C. O'Reilly, 2001: A hybrid Eulerian–Lagrangian model for spectral wave evolution with application to bottom friction on the continental shelf. J. Phys. Oceanogr., 31 , 14981516.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., T. G. Drake, and T. H. C. Herbers, 2002: Observations of wave-generated vortex ripples on the North Carolina continental shelf. J. Geophys. Res., 107 .3143, doi:10.1029/2001JC000986.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., W. C. O'Reilly, T. H. C. Herbers, and P. F. Jessen, 2003: Swell transformation across the continental shelf. Part I: Attenuation and directional broadening. J. Phys. Oceanogr., 33 , 19211939.

    • Search Google Scholar
    • Export Citation
  • Bouws, E., and G. J. Komen, 1983: On the balance between growth and dissipation in an extreme depth-limited wind-sea in the southern North Sea. J. Phys. Oceanogr., 13 , 16531658.

    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., 1994a: Bottom elasticity. Dynamics and Modeling of Ocean Waves, G. J. Komen et al., Eds., Cambridge University Press, 341–343.

    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., 1994b: Bottom scattering and bottom elasticity. Dynamics and Modeling of Ocean Waves, G. J. Komen et al., Eds., Cambridge University Press, 167–171.

    • Search Google Scholar
    • Export Citation
  • Elgar, S., T. H. C. Herbers, and R. T. Guza, 1994: Reflection of ocean surface gravity waves from a natural beach. J. Phys. Oceanogr., 24 , 15031511.

    • Search Google Scholar
    • Export Citation
  • Forristall, G. Z., E. H. Doyle, W. Silva, and M. Yoshi, 1990: Verification of a soil wave interaction model (SWIM). Modeling Marine Systems, A. M. Davies, Ed., Vol. 2, CRC Press, 41–46.

    • Search Google Scholar
    • Export Citation
  • Gelci, R., H. Cazalé, and J. Vassal, 1957: Prévision de la houle. La méthode des densités spectroangulaires. Bull. Inf. Comité Central Océanogr. Etude Côtes, 9 , 416435.

    • Search Google Scholar
    • Export Citation
  • Graber, H. C., and O. S. Madsen, 1988: A finite-depth wind-wave model. Part I: Model description. J. Phys. Oceanogr., 18 , 14651483.

  • Grant, W. D., and O. S. Madsen, 1979: Combined wave and current interaction with a rough bottom. J. Geophys. Res., 84 , 17971808.

  • Grant, W. D., and O. S. Madsen, 1982: Movable bed roughness in unsteady oscillatory flow. J. Geophys. Res., 87 (C1) 469481.

  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity wave spectrum, Part I: General theory. J. Fluid Mech., 12 , 481501.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and J. I. Collins, 1968: Spectral dissipation of finite depth gravity waves due to turbulent bottom friction. J. Mar. Res., 26 , 112.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors. 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project. Dtsch. Hydrogr. Z., 8 (12) (Suppl. A) 195.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, S., and K. Hasselmann, 1985: Computation and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer. J. Phys. Oceanogr., 15 , 13691377.

    • Search Google Scholar
    • Export Citation
  • Herbers, T. H. C., E. J. Hendrickson, and W. C. O'Reilly, 2000: Propagation of swell across a wide continental shelf. J. Geophys. Res., 105 (C8) 1972919737.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., and H. L. Tolman, 1991: Effects of the Gulf Stream on ocean waves. J. Geophys. Res., 96 (C7) 1275512771.

  • Johnson, H. K., and H. Kofoed-Hansen, 2000: Influence of bottom friction on sea surface roughness and its impact on shallow water wind wave modeling. J. Phys. Oceanogr., 30 , 17431756.

    • Search Google Scholar
    • Export Citation
  • Kajiura, K., 1968: A model of the bottom boundary layer in water waves. Bull. Earthquake Res. Inst. Univ. Tokyo, 46 , 75123.

  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, Eds.,. 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and D. K. P. Yue, 1998: On generalized Bragg scattering of surface waves by bottom ripples. J. Fluid Mech., 356 , 297326.

  • Long, R. B., 1973: Scattering of surface waves by an irregular bottom. J. Geophys. Res., 78 (33) 78617870.

  • Madsen, O. S., P. P. Mathisen, and M. M. Rosengaus, 1990: Movable bed friction factors for spectral waves. Proc. 22d Int. Conf. on Coastal Engineering, Delft, Netherlands, ASCE, 420–429.

    • Search Google Scholar
    • Export Citation
  • O'Reilly, W. C., T. H. C. Herbers, R. J. Seymour, and R. T. Guza, 1996: A comparison of directional buoy and fixed platform measurements of pacific swell. J. Atmos. Oceanic Technol., 13 , 231238.

    • Search Google Scholar
    • Export Citation
  • Richter, K., B. Schmalfeldt, and J. Siebert, 1976: Bottom irregularities in the North Sea. Dtsch. Hydrogr. Z., 29 (1) 110.

  • Shemdin, O. H., S. V. Hsiao, H. E. Carlson, K. Hasselmann, and K. Schulze, 1980: Mechanisms of wave transformation in finite depth water. J. Geophys. Res., 85 (C9) 50125018.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 1994: Wind waves and moveable-bed bottom friction. J. Phys. Oceanogr., 24 , 9941009.

  • Tournadre, J., 1993: Time and space scales of significant wave heights. J. Geophys. Res., 98 (C3) 47274738.

  • Weber, S. L., 1994: Bottom friction and percolation. Dynamics and Modeling of Ocean Waves, G. J. Komen et al., Eds., Cambridge University Press, 156–166.

    • Search Google Scholar
    • Export Citation
  • Zhukovets, A. M., 1963: The influence of bottom roughness on wave motion in a shallow body of water. Izv. Akd. Nauk SSSR, Seriya Geofizicheskaya, 10 , 15611570.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 424 138 5
PDF Downloads 272 146 36