Bubble Clouds and Langmuir Circulation: Observations and Models

S. A. Thorpe SOES, Southampton Oceanography Centre, Southampton, United Kingdom

Search for other papers by S. A. Thorpe in
Current site
Google Scholar
PubMed
Close
,
T. R. Osborn Department of Earth and Planetary Science, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by T. R. Osborn in
Current site
Google Scholar
PubMed
Close
,
D. M. Farmer Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by D. M. Farmer in
Current site
Google Scholar
PubMed
Close
, and
S. Vagle Institute of Ocean Sciences, Patricia Bay, Sidney, British Columbia, Canada

Search for other papers by S. Vagle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Concurrent measurements of the rate of dissipation of turbulent kinetic energy and the void fraction and size distribution of near-surface bubbles are described. Relatively high dissipation rates and void fractions are found in bubble bands produced by Langmuir circulation. The mean dissipation rates observed in the bands are close to those at which the dynamics of algae is significantly affected. The data are used to test basic assumptions underpinning models of subsurface bubbles and associated air–sea gas transfer. A simple model is used to examine the qualitative effect of Langmuir circulation on the vertical diffusion of bubbles and the representation of Langmuir circulation in models of gas transfer. The circulation is particularly effective in vertical bubble transfer when bubbles are injected by breaking waves to depths at which they are carried downward by the circulation against their tendency to rise. The estimated value of the ratio r of the eddy diffusivity of particles (resembling bubbles) Kp to the eddy viscosity Kz depends on depth z and on the form selected for Kz. The effects of nonoverlapping or superimposed Langmuir cells of different size may be very different. Multiple nonoverlapping cells of similar scales with Kz independent of depth can result in concentration profiles that resemble those of a law-of-the-wall Kz. It is demonstrated that model prediction of bubble distributions and of gas transfer (which is related to bubble submergence time) is sensitive to Kz and to the size distribution of Langmuir circulation cells.

Corresponding author address: Dr. S. A. Thorpe, Bodfryn, Glanrafon, Llangoed, Anglesey LL58 8PH, United Kingdom. Email: oss413@sos.bangor.ak.uk

Abstract

Concurrent measurements of the rate of dissipation of turbulent kinetic energy and the void fraction and size distribution of near-surface bubbles are described. Relatively high dissipation rates and void fractions are found in bubble bands produced by Langmuir circulation. The mean dissipation rates observed in the bands are close to those at which the dynamics of algae is significantly affected. The data are used to test basic assumptions underpinning models of subsurface bubbles and associated air–sea gas transfer. A simple model is used to examine the qualitative effect of Langmuir circulation on the vertical diffusion of bubbles and the representation of Langmuir circulation in models of gas transfer. The circulation is particularly effective in vertical bubble transfer when bubbles are injected by breaking waves to depths at which they are carried downward by the circulation against their tendency to rise. The estimated value of the ratio r of the eddy diffusivity of particles (resembling bubbles) Kp to the eddy viscosity Kz depends on depth z and on the form selected for Kz. The effects of nonoverlapping or superimposed Langmuir cells of different size may be very different. Multiple nonoverlapping cells of similar scales with Kz independent of depth can result in concentration profiles that resemble those of a law-of-the-wall Kz. It is demonstrated that model prediction of bubble distributions and of gas transfer (which is related to bubble submergence time) is sensitive to Kz and to the size distribution of Langmuir circulation cells.

Corresponding author address: Dr. S. A. Thorpe, Bodfryn, Glanrafon, Llangoed, Anglesey LL58 8PH, United Kingdom. Email: oss413@sos.bangor.ak.uk

Save
  • Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams III, W. M. Drennan, K. K. Kahma, and S. A. Kitagorodskii, 1992: Enhanced dissipation of turbulent kinetic energy beneath surface waves. Nature, 359 , 219220.

    • Search Google Scholar
    • Export Citation
  • Bainbridge, R., 1957: The size, shape and density of marine phytoplankton concentrations. Cambridge Philos. Soc. Biol. Rev., 91–115.

  • Batchelor, G. K., 1972: Sedimentation in a dilute dispersion of spheres. J. Fluid Mech., 52 , 245268.

  • Batchelor, G. K., 1980: Mass transfer from small particles suspended in turbulent flow. J. Fluid Mech., 98 , 609623.

  • Csanady, G. T., 1994: Vortex pair model of Langmuir circulation. J. Mar. Res., 52 , 559581.

  • Csanady, G. T., 2001: Air–Sea Interaction. Cambridge University Press, 239 pp.

  • D'Asaro, E. A., 2001: Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31 , 35303537.

  • Deane, G. B., and M. D. Stokes, 2002: Scale dependence of bubble creation mechanisms in breaking waves. Nature, 418 , 839844.

  • Dimas, A. A., and L. T. Fialkowski, 2000: Large-wave simulation (LWS) of free-surface flows developing weak spilling breaking waves. J. Comput. Phys., 159 , 172196.

    • Search Google Scholar
    • Export Citation
  • Estrada, M., and E. Berdalet, 1998: Effects of turbulence on phytoplankton. Physiological Ecology of Harmful Algal Blooms, D. M. Anderson et al., Eds., NATO ASI Series, Vol. G41, Springer, 601–618.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and D. D. Lemon, 1984: The influence of bubbles on ambient noise in the ocean at high wind speeds. J. Phys. Oceanogr., 14 , 17621778.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and M. Li, 1995: Patterns of bubble clouds organized by Langmuir circulation. J. Phys. Oceanogr., 25 , 14251440.

  • Farmer, D. M., and J. R. Gemmrich, 1996: Measurements of temperature fluctuations in breaking surface waves. J. Phys. Oceanogr., 26 , 816825.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., S. Vagle, and A. D. Booth, 1998: A free-flooding acoustical resonator for measurement of bubble size distributions. J. Atmos. Oceanic Technol., 15 , 11321146.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., S. Vagle, and M. Li, 1999: Wave breaking, turbulence and bubble distributions in the ocean surface layer. The Wind-Driven Air–Sea Interface, M. Banner, Ed., School of Mathematics, The University of New South Wales, 187–192.

    • Search Google Scholar
    • Export Citation
  • Garcia, H. E., and R. F. Keeling, 2001: On the global oxygen anomaly and air–sea flux. J. Geophys. Res., 106 , 3115531166.

  • Garrett, C., M. Li, and D. M. Farmer, 2000: The connection between bubble size and energy dissipation rates in the upper ocean. J. Phys. Oceanogr., 30 , 21632171.

    • Search Google Scholar
    • Export Citation
  • Garrettson, G. A., 1973: Bubble transport theory with application to the upper ocean. J. Fluid Mech., 59 , 187206.

  • Geernaert, G. L., 1990: Bulk parametrization for the wind speed and heat fluxes. Surface Waves and Fluxes, G. L. Geernaert and W. J. Plant, Eds., Vol. 1, Kluwer Academic, 91–172.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and D. M. Farmer, 1999a: Near-surface turbulence and thermal structure in a wind-driven sea. J. Phys. Oceanogr., 29 , 480499.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and D. M. Farmer, 1999b: Observations of the scale and occurrence of breaking surface waves. J. Phys. Oceanogr., 29 , 25952606.

    • Search Google Scholar
    • Export Citation
  • Gibson, C. H., and W. H. Thomas, 1995: Effects of turbulence intermittency on growth inhibition of a red tide dinoflagellate Gonyaulax polyedra Stein. J. Geophys. Res., 100 , 2484124846.

    • Search Google Scholar
    • Export Citation
  • Hartunian, R. A., and W. R. Sears, 1957: On the instability of small gas bubbles moving uniformly in various liquids. J. Fluid Mech., 3 , 2747.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. D., and R. C. Cooke, 1979: Bubble populations and spectra in coastal waters: A photographic approach. J. Geophys. Res., 84 , 37613766.

    • Search Google Scholar
    • Export Citation
  • Lamarre, E., and W. K. Melville, 1991: Air entrainment and dissipation in breaking waves. Nature, 351 , 469472.

  • Lamarre, E., and W. K. Melville, 1994: Void-fraction measurements and sound-speed fields in bubble plumes generated by breaking waves. J. Acoust. Soc. Amer., 95 , 13171329.

    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulation. Annu. Rev. Fluid Mech., 87 , 119123.

  • Li, M., and C. Garrett, 1995: Is Langmuir circulation driven by surface waves or surface cooling? J. Phys. Oceanogr., 25 , 6476.

  • McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6 , 225238.

  • McWilliams, J. C., P. P. Sullivan, and C-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334 , 3158.

  • Melville, W. K., F. Veron, and C. J. White, 2002: The velocity field under breaking waves: Coherent structures and turbulence. J. Fluid Mech., 454 , 203234.

    • Search Google Scholar
    • Export Citation
  • Moisander, P. H., J. L. Henck, K. Kononen, and H. W. Paerl, 2002: Small-scale shear effects on heterocystous cyanobacteria. Limnol. Oceanogr., 47 , 108119.

    • Search Google Scholar
    • Export Citation
  • Rapp, R. J., and W. K. Melville, 1990: Laboratory measurement of deep-water breaking waves. Philos. Trans. Roy. Soc. London, 331A , 735800.

    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., and J. S. Turner, 1956: On the collision of drops in turbulent clouds. J. Fluid Mech., 1 , 1630.

  • Schudlich, R., and S. Emerson, 1996: Gas supersaturation in the surface ocean: The roles of heat, gas exchange and bubbles. Deep-Sea Res., 43 , 569589.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100 , 85018522.

    • Search Google Scholar
    • Export Citation
  • Smayda, T. J., and C. S. Reynolds, 2001: Community assembly in marine phytoplankton: applications of recent models to harmful dinoflagellate blooms. J. Plankton Res., 23 , 447461.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1998: Evolution of Langmuir circulation during a storm. J. Geophys. Res., 103 , 1264912668.

  • Smith, J. A., 1999: Observations of wind, waves and the mixed layer: The scaling of surface motion. The Wind-Driven Air–Sea Interface, M. Banner, Ed., School of Mathematics, The University of New South Wales, 231–238.

    • Search Google Scholar
    • Export Citation
  • Spelt, P. D. M., and A. Biesheuvel, 1997: On the motion of gas bubbles in homogeneous isotropic turbulence. J. Fluid Mech., 336 , 221244.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1949: Trajectories of small bodies sinking slowly through convection cells. J. Mar. Res., 8 , 2429.

  • Stramski, D., and J. Tegowski, 2001: Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field. J. Geophys. Res., 106 , 3134531360.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. A., P. Y. Li, and J. D. Wilson, 2003: Lagrangian simulation of suspended particles in the neutrally stratified surface boundary layer. J. Geophys Res., in press.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennen, K. K. Kahma, A. J. Williams III, P. A. Hwang, and S. A. Kitagorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26 , 792807.

    • Search Google Scholar
    • Export Citation
  • Terrill, E. J., W. K. Melville, and D. Stramski, 2001: Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean. J. Geophys. Res., 106 , 1681516824.

    • Search Google Scholar
    • Export Citation
  • Thomas, W. H., and C. H. Gibson, 1990: Quantified small-scale turbulence inhibits a red tide dinoflagellate Gonyaulax polyedra Stein. Deep-Sea Res., 37 , 15831593.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1982: On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air–sea gas transfer. Philos. Trans. Roy. Soc. London, 304A , 155210.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1984a: A model of the turbulent diffusion of bubbles below the sea surface. J. Phys. Oceanogr., 14 , 841854.

  • Thorpe, S. A., 1984b: On the determination of Kυ in the near-surface ocean from acoustic measurements of bubbles. J. Phys. Oceanogr., 14 , 855863.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1984c: The effect of Langmuir circulation on the distribution of submerged bubbles caused by breaking waves. J. Fluid Mech., 142 , 151170.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1984d: The role of bubbles produced by breaking waves in super-saturating the near-surface ocean mixing layer with oxygen. Ann. Geophys., 2 , 5356.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1986: Bubble clouds: A review of their detection by sonar, of related models, and of how Kυ may be determined. Oceanic Whitecaps, E. C. Monahan and G. MacNioaill, Eds., D. Reidel, 57–68.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1992: Bubble clouds and the dynamics of the upper ocean. Quart. J. Roy. Meteor. Soc., 118 , 122.

  • Thorpe, S. A., and A. J. Hall, 1982: Observations of the thermal structure of Langmuir circulation. J. Fluid Mech., 114 , 237250.

  • Thorpe, S. A., and A. J. Hall, 1983: The characteristics of breaking waves, bubble clouds and near-surface currents observed using side-scan sonar. Cont. Shelf Res., 1 , 353384.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., P. Bowyer, and D. K. Woolf, 1992: Some factors affecting the size distributions of oceanic bubbles. J. Phys. Oceanogr., 22 , 382389.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., M. S. Curé, A. Graham, and A. J. Hall, 1994: Sonar observations of Langmuir circulation, and estimation of dispersion of floating bodies. J. Atmos. Oceanic Technol., 11 , 12731294.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., W. A. M. Nimmo Smith, A. Graham, and A. M. Thurnherr, 1999: Patterns in foam and shallow tidal flows. The Wind-Driven Air–Sea Interface. M. Banner, Ed., School of Mathematics, The University of New South Wales, 257–264.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., T. R. Osborn, J. E. F. Jackson, A. J. Hall, and R. G. Lueck, 2003: Measurements of turbulence in the upper-ocean mixing layer using Autosub. J. Phys. Oceanogr., 33 , 122145.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., J. P. Dean, J. Marra, J. F. Price, E. A. Francis, and D. C. Broadman, 1985: Three-dimensional flow in the upper ocean. Science, 227 , 15521556.

    • Search Google Scholar
    • Export Citation
  • Woolf, D. K., and S. A. Thorpe, 1991: Bubbles and the air–sea exchange of gases in near-saturation conditions. J. Mar. Res., 49 , 435466.

    • Search Google Scholar
    • Export Citation
  • Zedel, L., and D. M. Farmer, 1991: Organized structures in subsurface bubble clouds: Langmuir circulation in the open ocean. J. Geophys. Res., 96 , 88898900.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 500 155 14
PDF Downloads 355 122 15