Formation of the South Pacific Shallow Salinity Minimum: A Southern Ocean Pathway to the Tropical Pacific

Johannes Karstensen Centro de Investigación Oceanográfica (COPAS), Programa Regional de Oceanografía Física y Clima (PROFC), Universidad de Concepción, Concepción, Chile

Search for other papers by Johannes Karstensen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the eastern South Pacific Ocean, at a depth of about 200 m, a salinity minimum is found. This minimum is associated with a particular water mass, the “Shallow Salinity Minimum Water” (SSMW). SSMW outcrops in a fresh tongue (Smin) centered at about 45°S. The Smin appears to emanate from the eastern boundary, against the mean flow. The watermass transformation that creates SSMW and Smin is investigated here. The Smin and SSMW are transformed from saltier and warmer waters originating from the western South Pacific. The freshening and cooling occur when the water is advected eastward at the poleward side of the subtropical gyre. Sources of freshening and cooling are air–sea exchange and advection of water from south of the subtropical gyre. A freshwater and heat budget for the mixed layer reveals that both sources equally contribute to the watermass transformation in the mixed layer. The freshened and cooled mixed layer water is subducted into the gyre interior along the southern rim of the subtropical gyre. Subduction into the zonal flow restricts the transformation of interior properties to diffusion only. A simple advection/diffusion balance reveals diffusion coefficients of order 2000 m2 s−1. The tongue shape of the Smin is explained from a dynamical viewpoint because no relation to a positive precipitation–evaporation balance was found. Freshest Smin values are found to coincide with slowest eastward mixed layer flow that accumulates the largest amounts of freshwater in the mixed layer and creates the fresh tongue at the sea surface. Although the SSMW is the densest and freshest mode of water subducted along the South American coast, the freshening and cooling in the South Pacific affect a whole range of densities (25.0–26.8 kg m−3). The transformed water turns northward with the gyre circulation and contributes to the hydrographic structure of the gyre farther north. Because the South Pacific provides most of the source waters that upwell along the equatorial Pacific, variability in South Pacific hydrography may influence equatorial Pacific hydrography. Because one-half of the transformation is found to be controlled through Ekman transport, variability in wind forcing at the southern rim of the subtropical gyre may be a source for variability of the equatorial Pacific.

Current affiliation: IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften an der Universität Kiel, Kiel, Germany

Corresponding author address: Johannes Karstensen, IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften an der Universität Kiel, Dienstgebäude Westufer, Düsternbrooker Weg 20, 24105 Kiel, Germany. Email: jkarstensen@ifm-geomar.de

Abstract

In the eastern South Pacific Ocean, at a depth of about 200 m, a salinity minimum is found. This minimum is associated with a particular water mass, the “Shallow Salinity Minimum Water” (SSMW). SSMW outcrops in a fresh tongue (Smin) centered at about 45°S. The Smin appears to emanate from the eastern boundary, against the mean flow. The watermass transformation that creates SSMW and Smin is investigated here. The Smin and SSMW are transformed from saltier and warmer waters originating from the western South Pacific. The freshening and cooling occur when the water is advected eastward at the poleward side of the subtropical gyre. Sources of freshening and cooling are air–sea exchange and advection of water from south of the subtropical gyre. A freshwater and heat budget for the mixed layer reveals that both sources equally contribute to the watermass transformation in the mixed layer. The freshened and cooled mixed layer water is subducted into the gyre interior along the southern rim of the subtropical gyre. Subduction into the zonal flow restricts the transformation of interior properties to diffusion only. A simple advection/diffusion balance reveals diffusion coefficients of order 2000 m2 s−1. The tongue shape of the Smin is explained from a dynamical viewpoint because no relation to a positive precipitation–evaporation balance was found. Freshest Smin values are found to coincide with slowest eastward mixed layer flow that accumulates the largest amounts of freshwater in the mixed layer and creates the fresh tongue at the sea surface. Although the SSMW is the densest and freshest mode of water subducted along the South American coast, the freshening and cooling in the South Pacific affect a whole range of densities (25.0–26.8 kg m−3). The transformed water turns northward with the gyre circulation and contributes to the hydrographic structure of the gyre farther north. Because the South Pacific provides most of the source waters that upwell along the equatorial Pacific, variability in South Pacific hydrography may influence equatorial Pacific hydrography. Because one-half of the transformation is found to be controlled through Ekman transport, variability in wind forcing at the southern rim of the subtropical gyre may be a source for variability of the equatorial Pacific.

Current affiliation: IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften an der Universität Kiel, Kiel, Germany

Corresponding author address: Johannes Karstensen, IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften an der Universität Kiel, Dienstgebäude Westufer, Düsternbrooker Weg 20, 24105 Kiel, Germany. Email: jkarstensen@ifm-geomar.de

Save
  • Carton, J. A., G. Chepurin, and X. Cao, 2000a: A simple ocean data assimilation analysis of the global upper ocean 1950–1995. Part II: Results. J. Phys. Oceanogr, 30 , 311326.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, X. Cao, and B. S. Giese, 2000b: A simple ocean data assimilation analysis of the global upper ocean 1950–1995. Part I: Method. J. Phys. Oceanogr, 30 , 294309.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 1987: Subduction. Dynamics of the Oceanic Surface Mixed Layer: Proc. 'Aha Huliko'a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 181– 196.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., C. C. Young, and S. Levitus, 1994a: Anomalies of Fresh Water Fluxes. Vol. 4, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 9, 308 pp.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., C. C. Young, and S. Levitus, 1994b: Anomalies of Heat and Momentum Fluxes. Vol. 3, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 8, 411 pp.

    • Search Google Scholar
    • Export Citation
  • Davila, P. M., D. Figueroa, and E. Müller, 2002: Freshwater input into the coastal ocean and its relation with the salinity distribution off austral Chile (35–55°S). Cont. Shelf Res, 22 , 521534.

    • Search Google Scholar
    • Export Citation
  • Deacon, G. E. R., 1977: Comments on a counterclockwise circulation in the Pacific subantarctic sector of the Southern Ocean suggested by McGinnis. Deep-Sea Res, 24 , 927930.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. D., 1987: On the wind-driven circulation of the South Pacific Ocean. J. Phys. Oceanogr, 17 , 613630.

  • Emery, W. J., and J. Meincke, 1986: Global water masses: Summary and review. Oceanol. Acta, 9 , 383391.

  • Garreaud, R. D., and D. S. Battisti, 1999: Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Climate, 12 , 21132123.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr, 25 , 463474.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gordon, A. L., S. Ma, D. B. Olson, P. Hacker, A. Ffield, L. D. Talley, D. Wilson, and M. Baringer, 1997: Advection and diffusion of Indonesian Throughflow Water within the Indian Ocean South Equatorial Current. Geophys. Res. Lett, 24 , 25732576.

    • Search Google Scholar
    • Export Citation
  • Grist, J. P., and S. A. Josey, 2003: Inverse analysis adjustment of the SOC air–sea flux climatology using ocean heat transport constraints. J. Climate, 16 , 32743295.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and G. Philander, 1997: Interdecadal climate fluctuations that depend on exchange between the Tropics and the extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 373–386.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and B. Qiu, 1998: The structure of the wind-driven circulation in the subtropical South Pacific Ocean. J. Phys. Oceanogr, 28 , 11731186.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., 2001: The Pacific Ocean subtropical cell surface limb. Geophys. Res. Lett, 28 , 17711774.

  • Johnson, G. C., and M. McPhaden, 1999: Interior pycnocline flow from the subtropical to the equatorial Pacific Ocean. J. Phys. Oceanogr, 29 , 30733089.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1998: The Southampton Oceanography Centre (SOC) Ocean–Atmosphere Heat, Momentum and Freshwater Flux Atlas. Southampton Oceanography Centre Tech. Rep. 6, 30 pp.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 2002: Wind stress forcing of the ocean in the SOC climatology: Comparisons with the NCEP–NCAR, ECMWF, UWM/COADS, and Hellerman and Rosenstein datasets. J. Phys. Oceanogr, 32 , 19932019.

    • Search Google Scholar
    • Export Citation
  • Karstensen, J., and D. Quadfasel, 2002: Formation of Southern Hemisphere thermocline waters: Water mass conversion and subduction. J. Phys. Oceanogr, 32 , 30203038.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc, 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., J. P. McCreary Jr., and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett, 26 , 17431746.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., T. Boyer, M. Conkright, D. Johnson, T. O'Brien, J. Antonov, C. Stephens, and R. Gelfeld, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

    • Search Google Scholar
    • Export Citation
  • Luyten, J., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr, 13 , 292309.

  • Marshall, J. C., A. J. G. Nurser, and R. G. Williams, 1993: Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr, 23 , 13151329.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation. Deep-Sea Res, 46 , 545572.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., H. Jones, R. Karsten, and R. Wardle, 2002: Can eddies set ocean stratification? J. Phys. Oceanogr, 32 , 2638.

  • McCartney, M. S., 1977: Subantarctic Mode Water. A Voyage of Discovery, Vol. 24 (Suppl.), M. Angel, Ed., Pergamon Press, 103–119.

  • McCreary, J. P., and P. Lu, 1994: Interaction between subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr, 24 , 466497.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415 , 603608.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., M. J. McPhaden, and G. C. Johnson, 2001: Vertical velocities and transports in the equatorial Pacific during 1993– 1999. J. Phys. Oceanogr, 31 , 32303248.

    • Search Google Scholar
    • Export Citation
  • Molinelli, E., 1978: Isohaline thermoclines in the southeast Pacific Ocean. J. Phys. Oceanogr, 8 , 11391145.

  • Neshyba, S., and T. R. Fonseca, 1980: Evidence for counterflow to the west wind drift off South America. J. Geophys. Res, 85 , 48884892.

    • Search Google Scholar
    • Export Citation
  • Peterson, R. G., and W. B. White, 1998: Slow oceanic teleconnections linking the Antarctic Circumpolar Current wave with the tropical El Niño–Southern Oscillation. J. Geophys. Res, 103 , 2457324583.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. X. Huang, 1995: Ventilation of the North Atlantic and North Pacific: Subduction versus obduction. J. Phys. Oceanogr, 25 , 23742390.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1973: The shallow salinity minima of the Pacific Ocean. Deep-Sea Res, 20 , 5168.

  • Rintoul, S. R., and M. H. England, 2002: Ekman transport dominates local air–sea fluxes in driving variability of Subantarctic Mode Water. J. Phys. Oceanogr, 32 , 13081321.

    • Search Google Scholar
    • Export Citation
  • Robbins, P., J. Price, W. Owens, and W. Jenkins, 2000: On the importance of lateral diffusion for the ventilation of the lower thermocline in the subtropical North Atlantic. J. Phys. Oceanogr, 30 , 6789.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., B.G. Madec Blanke, O. Aumont, P. Ciais, and J-C. Dutay, 2003: Extratropical sources of equatorial Pacific upwelling in an OGCM. Geophys. Res. Lett.,30, 1089, doi: 10.1029/2002GL016003.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and B. Cornuelle, 1992: The subtropical mode waters of the South Pacific Ocean. J. Phys. Oceanogr, 22 , 11781187.

  • Roemmich, D., and J. Gilson, 2001: Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability? J. Phys. Oceanogr, 31 , 675687.

    • Search Google Scholar
    • Export Citation
  • Rothstein, L. M., R-H. Zhang, A. J. Busalacchi, and D. Chen, 1998: A numerical simulation of the mean water pathways in the subtropical and tropical Pacific Ocean. J. Phys. Oceanogr, 28 , 322343.

    • Search Google Scholar
    • Export Citation
  • Rowe, G. D., E. Firing, and G. C. Johnson, 2000: Pacific equatorial subsurface countercurrent velocity, transport, and potential vorticity. J. Phys. Oceanogr, 30 , 11721187.

    • Search Google Scholar
    • Export Citation
  • Schmitz Jr., W. R., 1996: On the World Ocean Circulation: Volume II. Woods Hole Oceanographic Institution Tech. Rep. WHOI-96-08, 237 pp.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., S. Venzke, A. J. Miller, D. W. Pierce, T. P. Barnett, C. Deser, and M. Latif, 1999: Pacific thermocline bridge revisited. Geophys. Res. Lett, 26 , 13291332.

    • Search Google Scholar
    • Export Citation
  • Schneider, W., R. Fuenzalida, E. Rodríguez-Rubio, J. Garcés-Vargas, and L. Bravo, 2003: Characteristics and formation of Eastern South Pacific Intermediate Water. Geophys. Res. Lett.,30, 1581, doi:10.1029/2003GL017086.

    • Search Google Scholar
    • Export Citation
  • Schott, F., M. Dengler, and R. Schoenefeldt, 2002: The shallow overturning circulation of the Indian Ocean. Progress in Oceanography, Vol. 53, Pergamon, 57–103.

    • Search Google Scholar
    • Export Citation
  • Schott, F., J. P. McCreary Jr., and G. C. Johnson, 2004: Shallow overturning circulations of the tropical–subtropical oceans. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, in press.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., D. M. Legler, and K. V. Verzone, 2001: Quantifying uncertainties in NCEP reanalysis using high-quality research vessel observations. J. Climate, 14 , 40624072.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr, 30 , 32123222.

  • Stommel, H., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76 , 30513055.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., R. G. Peterson, and M. Tomczak, 1995: The South Pacific Current. J. Phys. Oceanogr, 25 , 7791.

  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr, 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., K. Dixon, and W. S. Broecker, 1991: The Peru upwelling and the ventilation of the South Pacific thermocline. J. Geophys. Res, 96 , 2046720497.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., and L. Talley, 1996: Water-property distribution along an eastern Pacific hydrographic section at 135W. J. Mar. Res, 54 , 541564.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., and L. Talley, 1998: A Pacific hydrogaphic section at 88°W: Water-property distribution. J. Geophys. Res, 103 , 1289912918.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S., E. Firing, and H. Bryden, 1994: Direct observations of the Ekman balance at 10°N in the Pacific. J. Phys. Oceanogr, 24 , 16661679.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., 1989: The influence of air–sea interaction on the ventilated thermocline. J. Phys. Oceanogr, 19 , 12551267.

  • WOCE Data Products Committee, 2000: WOCE Global Data,. version 2.0. WOCE Hydrographic Programme Rep. 171/00, WOCE International Project Office, Southampton, United Kingdom.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., and G. C. Johnson, 2003: South Pacific Eastern Subtropical Mode Water. J. Phys. Oceanogr, 33 , 14931509.

  • Woods, J. D., 1985: Physics of thermocline ventilation. Coupled Ocean–Atmosphere Models, J. C. J. Nihoul, Ed., Elsevier, 543– 590.

  • Wyrtki, K., 1981: An estimate of equatorial upwelling in the Pacific. J. Phys. Oceanogr, 11 , 12051214.

  • Yeager, S. G., and W. G. Large, 2004: Late-winter generation of spiciness on subducted isopycnals. J. Phys. Oceanogr, 34 , 15281547.

  • Zhang, D., M. J. McPhaden, and W. Johns, 2003: Observational evidence for flow between the subtropical and tropical Atlantic: The Atlantic subtropical cells. J. Phys. Oceanogr, 33 , 17831797.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Z., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–1993. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 468 110 16
PDF Downloads 293 60 9