• Antonov, J., S. Levitus, T. P. Boyer, M. Conkright, T. O'Brien, and C. Stephens, 1998: Temperature of the Atlantic/Pacific/Indian Ocean. Vols. 1–3,. World Ocean Atlas 1998, NOAA Atlas NESDIS 27, 166 pp.

    • Search Google Scholar
    • Export Citation
  • Bobrovich, A. V., and G. M. Reznik, 1999: Planetary waves in a stratified ocean of variable depth. Part 2: Continuously stratified ocean. J. Fluid Mech, 388 , 147169.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., S. Levitus, J. Antonov, M. Conkright, T. O'Brien, and C. Stephens, 1998: Salinity of the Atlantic/Pacific/Indian Ocean. Vols. 4–6,. World Ocean Atlas 1998, NOAA Atlas NESDIS 30, 166 pp.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272 , 234238.

  • de Szoeke, R. A., and D. B. Chelton, 1999: The modification of long planetary waves by homogeneous potential vorticity layers. J. Phys. Oceanogr, 29 , 500511.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 1998: On “too fast” baroclinic planetary waves in the general circulation. J. Phys. Oceanogr, 28 , 17391758.

  • Fu, L. L., and D. B. Chelton, 2001: Large-scale ocean circulation. Satellite Altimetry and Earth Sciences, L. L. Fu and A. Cazenave, Eds., Academic Press, 133–169.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res, 21 , 499528.

    • Search Google Scholar
    • Export Citation
  • Gnevyshev, V., and V. Shrira, 1989: Monochromatic Rossby wave transformation in zonal flow critical layer (in Russian). Phys. Atmos. Oceans, 25 , 852862. (English translation:. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys, 25 , 628635. ).

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 1997: Localized coupling between surface and bottom-intensified flow over topography. J. Phys. Oceanogr, 27 , 977998.

  • Kang, Y. Q., and L. Magaard, 1979: Stable and unstable Rossby waves in the North Pacific Current as inferred from the mean stratification. Dyn. Atmos. Ocean, 3 , 114.

    • Search Google Scholar
    • Export Citation
  • Kaufman, A. N., J. J. Morehead, A. J. Brizard, and E. R. Tracy, 1999: Mode conversion in the Gulf of Guinea. J. Fluid Mech, 394 , 175192.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 1999: The effect of bottom topography on the speed of long extra-tropical planetary waves. J. Phys. Oceanogr, 29 , 26892710.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 2001: Large-scale propagating disturbances: Approximation by vertical normal modes. J. Phys. Oceanogr, 31 , 28522870.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 2003a: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part I: The local problem. J. Phys. Oceanogr, 33 , 784801.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 2003b: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part II: Ray propagation and comparison with observations. J. Phys. Oceanogr, 33 , 802821.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 2003c: Reply. J. Phys. Oceanogr, 33 , 15421547.

  • Killworth, P. D., D. B. Chelton, and R. A. de Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr, 27 , 19461966.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1999: Planetary wave modes in the thermocline: Non-Doppler-shift mode, advective mode and Green mode. Quart. J. Roy. Meteor. Soc, 125 , 13151339.

    • Search Google Scholar
    • Export Citation
  • National Geophysical Data Center, 1988: Digital relief of the surface of the earth. Data Announcement 88-MGG-02, NOAA, CD-ROM.

  • Owen, G. W., I. D. Abrahams, A. J. Willmott, and C. W. Hughes, 2002: On the scattering of baroclinic Rossby waves by a ridge in a continuously stratified ocean. J. Fluid Mech, 465 , 131155.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer Verlag, 710 pp.

  • Rhines, P. B., 1970: Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Fluid Dyn, 1 , 273302.

  • Samelson, R. M., 1989: Stochastically forced current fluctuations in vertical shear and over topography. J. Geophys. Res, 94 , 82078215.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2003: Comments on “The effect of bottom topography on the speed of long extratropical planetary waves.”. J. Phys. Oceanogr, 33 , 15361541.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., and J. C. McWilliams, 2001: The effect of bottom pressure decoupling on the speed of extratropical, baroclinic Rossby waves. J. Phys. Oceanogr, 31 , 14611476.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., and J. C. McWilliams, 2002: On the propagation of energy of long extratropical Rossby waves over slowly-varying topography. J. Fluid Mech, 473 , 295319.

    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 2001: Mode conversion for Rossby waves over topography: Comments on “Localized coupling between surface and bottom-intensified flow over topography.”. J. Phys. Oceanogr, 31 , 19221925.

    • Search Google Scholar
    • Export Citation
  • Welander, P., 1959: An advective model of the ocean thermocline. Tellus, 11 , 309318.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 269 90 5
PDF Downloads 187 61 1

The Dispersion Relation for Planetary Waves in the Presence of Mean Flow and Topography. Part I: Analytical Theory and One-Dimensional Examples

View More View Less
  • 1 Southampton Oceanography Centre, Empress Dock, Southampton, United Kingdom
Restricted access

Abstract

An eigenvalue problem for the dispersion relation for planetary waves in the presence of mean flow and bottom topographic gradients is derived, under the Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) assumption, for frequencies that are low when compared with the inertial frequency. Examples are given for the World Ocean that show a rich variety of behavior, including no frequency (or latitudinal) cutoff, solutions trapped at certain depths, coalescence of waves, and a lack of dispersion for most short waves.

Corresponding author address: Dr. Peter Killworth, Process Modelling Group, James Rennell Division, Southampton Oceanography Centre, Empress Dock S014 3ZH, United Kingdom. Email: p.killworth@soc.soton.ac.uk

Abstract

An eigenvalue problem for the dispersion relation for planetary waves in the presence of mean flow and bottom topographic gradients is derived, under the Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) assumption, for frequencies that are low when compared with the inertial frequency. Examples are given for the World Ocean that show a rich variety of behavior, including no frequency (or latitudinal) cutoff, solutions trapped at certain depths, coalescence of waves, and a lack of dispersion for most short waves.

Corresponding author address: Dr. Peter Killworth, Process Modelling Group, James Rennell Division, Southampton Oceanography Centre, Empress Dock S014 3ZH, United Kingdom. Email: p.killworth@soc.soton.ac.uk

Save