• Andrié, C., J. F. Ternon, M. J. Messias, L. Memery, and B. Bourlès, 1998: Chlorofluoromethane distributions in the deep equatorial Atlantic during January–March 1993. Deep-Sea Res, 45A , 903930.

    • Search Google Scholar
    • Export Citation
  • Arhan, M., K. J. Heywood, and B. A. King, 1999: The deep waters from the Southern Ocean at the entry to the Argentine Basin. Deep-Sea Res, 46B , 475499.

    • Search Google Scholar
    • Export Citation
  • Aumont, O., J. C. Orr, D. Jamous, P. Monfray, O. Marti, and G. Madec, 1998: A degradation approach to accelerate simulations to steady-state in a 3-D tracer transport model of the global ocean. Climate Dyn, 14 (2) 101116.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr, 27 , 581591.

    • Search Google Scholar
    • Export Citation
  • Beismann, J. O., and R. Redler, 2003: Model simulations of CFC uptake in North Atlantic Deep Water: Effects of parameterizations and grid resolution. J. Geophys. Res, 108 , 3159. doi:10.1029/2001JC001253.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1969: A numerical method for the study of the circulation of the World Ocean. J. Comput. Phys, 4 , 347376.

  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the World Ocean. J. Geophys. Res, 84 , 25032517.

  • Campin, J. M., and H. Goosse, 1999: A parameterization of dense overflow in large-scale ocean models in z-coordinate. Tellus, 51A , 412430.

    • Search Google Scholar
    • Export Citation
  • Castle, R. D., and Coauthors, 1998: Chemical and hydrographic profiles and underway measurements from the eastern North Atlantic during July and August of 1993. NOAA Data Rep. ERL AOML-32 (PB98-131865), 82 pp.

    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1984: A primitive equation, three-dimensional model of the ocean. GFDL Ocean Group Tech. Rep. 1, 250 pp.

  • Doney, S. C., and J. L. Bullister, 1992: A chlorofluorocarbon section in the eastern North Atlantic. Deep-Sea Res, 39A , 18571883.

  • Doney, S. C., and M. Hecht, 2002: Antarctic Bottom Water formation and deep-water chlorofluorocarbon distributions in a global ocean climate model. J. Phys. Oceanogr, 32 , 16421666.

    • Search Google Scholar
    • Export Citation
  • Döös, K., 1995: Interocean exchange of water masses. J. Geophys. Res, 100 (C7) 1349913514.

  • Döscher, R., and A. Beckmann, 2000: Effects of a bottom boundary layer parameterization in a coarse-resolution model of the North Atlantic Ocean. J. Atmos. Oceanic Technol, 17 , 698707.

    • Search Google Scholar
    • Export Citation
  • Dutay, J. C., and Coauthors, 2002: Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models. Ocean Modell, 4 , 89120.

    • Search Google Scholar
    • Export Citation
  • England, M. H., 1995: Using chlorofluorocarbons to assess ocean climate models. Geophys. Res. Lett, 22 , 30513054.

  • England, M. H., and H. C. Hirst, 1997: Chlorofluorocarbon uptake in a World Ocean model. Part 2: Sensitivity to surface thermohaline forcing and subsurface mixing parameterisation. J. Geophys. Res, 102 , 1570915731.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and S. Rahmstorf, 1999: Sensitivity of ventilation rates and radiocarbon uptake to subsurface mixing parameterization in ocean models. J. Phys. Oceanogr, 29 , 28022827.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and E. Maier-Reimer, 2001: Using chemical tracers to assess ocean models. Rev. Geophys, 39 , 2970.

  • England, M. H., V. C. Garçon, and J. F. Minster, 1994: Chlorofluorocarbon uptake in a World Ocean model. Part 1: Sensitivity to the surface gas forcing. J. Geophys. Res, 99 , 2521525233.

    • Search Google Scholar
    • Export Citation
  • Esbenson, S. K., and Y. Kushnir, 1981: The heat budget of the global ocean: An estimate from surface marine observations. Climate Research Institute, Oregon State University, Tech. Rep. 29, 27 pp.

    • Search Google Scholar
    • Export Citation
  • Friedrichs, M. A. M., and M. H. Hall, 1993: Deep circulation in the tropical North Atlantic. J. Mar. Res, 51 , 697922.

  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res, 91 , 50375046.

  • Gouriou, T., B. Bourlès, H. Mercier, and R. Chuchla, 1999: Deep jets in the equatorial Atlantic Ocean. J. Geophys. Res, 104 (C9) 2121721226.

    • Search Google Scholar
    • Export Citation
  • Gouriou, T., and Coauthors, 2001: Deep circulation in the equatorial Atlantic Ocean. Geophys. Res. Lett, 28 , 819822.

  • Haine, T. W. N., A. J. Watson, M. I. Liddicoat, and R. R. Dickson, 1998: The flow of Antarctic bottom water to the southwest Indian Ocean estimated using CFCs. J. Geophys. Res, 103 (C12) 2763727653.

    • Search Google Scholar
    • Export Citation
  • Hall, T. M., T. W. N. Haine, and D. W. Waugh, 2002: Inferring the concentration of anthropogenic carbon in the ocean from tracers. Global Biogeochem. Cycles, 16 , 1131. doi:10.1029/2001GB001835.

    • Search Google Scholar
    • Export Citation
  • Hazell, D., and M. H. England, 2003: Prediction of the fate of radioactive material in the South Pacific Ocean using a global eddyresolving model. J. Environ. Radio, 65 , 329355.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., 1999: Determination of water component age in ocean models: Application to the fate of North Atlantic Deep Water. Ocean Modell, 1 , 8194.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., S. P. O'Farrell, and H. B. Gordon, 2000: Comparison of a coupled ocean–atmosphere model with and without oceanic eddy-induced advection. Part I: Ocean spinup and control integrations. J. Climate, 13 , 139163.

    • Search Google Scholar
    • Export Citation
  • Kara, B. A., P. A. Rochford, and E. Hurlburt, 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res, 105 (C7) 1680316821.

    • Search Google Scholar
    • Export Citation
  • Kara, B. A., P. A. Rochford, and E. Hurlburt, 2003: Mixed layer depth variability over the global ocean. J. Geophys. Res, 108 , 3079. doi:10.1029/2000JC000736.

    • Search Google Scholar
    • Export Citation
  • Kawabe, M., S. Fujio, and D. Yanagimoto, 2003: Deep-water circulation at low latitudes in the western North Pacific. Deep-Sea Res, 50A , 631656.

    • Search Google Scholar
    • Export Citation
  • Kawase, M., and J. L. Sarmiento, 1985: Nutrients in the Atlantic thermocline. J. Geophys. Res, 90 (C5) 89618979.

  • Larque, L., K. Maamaatuaiahutapu, and V. Garçon, 1997: On the intermediate and deep water flows in the South Atlantic Ocean. J. Geophys. Res, 102 (C6) 1242512440.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatalogical Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Manabe, S., and R. J. Stouffer, 1996: Low-frequency variability of surface air temperature in a 1000-year integration of a coupled ocean–atmosphere–land surface model. J. Climate, 9 , 376393.

    • Search Google Scholar
    • Export Citation
  • Mantyla, A. W., and J. L. Reid, 1983: Abyssal characteristics of the World Ocean waters. Deep-Sea Res, 30A , 805833.

  • Mantyla, A. W., and J. L. Reid, 1995: On the origins of deep and bottom waters in the Indian Ocean. J. Geophys. Res, 100 (C2) 24172439.

    • Search Google Scholar
    • Export Citation
  • McClean, J. L., A. J. Semtner, and V. Zlotnicki, 1997: Comparisons of mesoscale variability in the Semtner–Chervin quarter-degree model, the Los Alamos sixth-degree model, and TOPEX/POSEIDON Data. J. Geophys. Res, 102 (C11) 2520325226.

    • Search Google Scholar
    • Export Citation
  • Nakano, H., and N. Suginohara, 2002: Effects of bottom boundary layer parameterization on reproducing deep and bottom waters in a World Ocean model. J. Phys. Oceanogr, 32 , 12091227.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., G. C. Johnson, and J. L. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Progress in Oceanography, Vol. 43, Pergamon, 55–109.

    • Search Google Scholar
    • Export Citation
  • Owens, W. B., and B. A. Warren, 2001: Deep circulation in the northwest corner of the Pacific Ocean. Deep-Sea Res, 40A , 959993.

  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr, 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., K. W. Dixon, and A. Rosati, 1991: The Geophysical Fluid Dynamics Laboratory Modular 755 Ocean Model users guide. Geophysical Fluid Dynamics Laboratory Ocean Group Tech. Rep. 2, 46 pp.

    • Search Google Scholar
    • Export Citation
  • Paillet, J., M. Arhan, and M. S. McCartney, 1998: Spreading of Labrador Sea Water in the eastern North Atlantic. J. Geophys. Res, 103 (C5) 1022310239.

    • Search Google Scholar
    • Export Citation
  • Peltola, E., and Coauthors, 2001: Chemical and hydrographic measurements on a Climate and Global Change Cruise along 24°N in the Atlantic Ocean WOCE section A5R (repeat) during January–February 1998. NOAA Data Rep. OAR AOML-41, 199 pp.

    • Search Google Scholar
    • Export Citation
  • Prinn, R. G., and Coauthors, 2000: A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J. Geophys. Res, 105 , 1775117792.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, D. C. Stokes, and W. Wang, 2001: An improved in situ satellite SST analysis for climate. J. Climate, 15 , 16091624.

    • Search Google Scholar
    • Export Citation
  • Ribbe, J., and M. Tomczak, 1997: On convection and the formation of Subantarctic Mode Water in the Fine Resolution Antarctic Model—FRAM. J. Mar. Syst, 13 , 137154.

    • Search Google Scholar
    • Export Citation
  • Rix, N. H., and J. Willebrand, 1996: Parameterization of mesoscale eddies as inferred from a high-resolution circulation model. J. Phys. Oceanogr, 26 , 22812285.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., S. Hautala, and D. Rudnick, 1996: Northward abyssal transport through the Samoan Passage and adjacent areas. J. Geophys. Res, 101 (C6) 1403914055.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., A. J. Weaver, and M. H. England, 2003: A region of enhanced northward Antarctic Intermediate Water transport in a coupled climate model. J. Phys. Oceanogr, 33 , 15281535.

    • Search Google Scholar
    • Export Citation
  • Santoso, A., and M. H. England, 2004: Antarctic Intermediate Water Circulation and variability in a coupled climate model. J. Phys. Oceanogr, 34 , 21602179.

    • Search Google Scholar
    • Export Citation
  • Schlosser, P., J. L. Bullister, R. Fine, W. J. Jenkins, R. Key, J. Lupton, W. Roether, and W. M. Smethie Jr., 2001: Transformation and age of water masses. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, S. Seidler et al., Eds., International Geophysical Series, Vol. 77, Academic Press, 431–452.

    • Search Google Scholar
    • Export Citation
  • Semtner, A., and R. Chervin, 1992: Ocean general circulation from a globally eddy-resolving model. J. Geophys. Res, 97 , 54935500.

  • Smethie, W. M., R. A. Fine, A. Putzka, and E. P. Jones, 2000: Tracing the flow of North Atlantic Deep Water using chlorofluorocarbons. J. Geophys. Res, 105 (C5) 1429714323.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., R. Tokmakian, A. Semtner, and C. Wunsch, 1996: How well does a quarter-degree global circulation model simulate large-scale observations? J. Geophys. Res, 101 , 2577925811.

    • Search Google Scholar
    • Export Citation
  • Stevens, I. G., and D. P. Stevens, 1999: Passive tracers in a general circulation model of the Southern Ocean. Ann. Geophys, 17 , 971982.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., and G. Siedler, 1988: Seasonal changes in the North Atlantic sub-tropical gyre. J. Geophys. Res, 93 , 81118118.

  • Suga, T. Y., and K. Hanawa, 1997: Thermostad distribution in the North Pacific subtropical gyre: The subtropical mode water and the central mode water. J. Phys. Oceanogr, 27 , 140152.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S., D. Stevens, and K. Heywood, 2004: Comparison of two time-variant forced eddy-permitting global ocean models with hydrography of the Scotia Sea. Ocean Modell., in press.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res, 42A , 477500.

  • Toggweiler, J. R., K. Dixon, and K. Bryan, 1989: Simulations of radiocarbon in a coarse-resolution World Ocean model. Part 1: Steady state prebomb distributions. J. Geophys. Res, 94 (C6) 82178242.

    • Search Google Scholar
    • Export Citation
  • Tokmakian, R., and P. G. Challenor, 1999: On the joint estimation of model and satellite sea surface height anomaly errors. Ocean Modell, 1 , 3952. and Erratum 119–125.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse resolution ocean circulation models. J. Phys. Oceanogr, 27 , 381402.

    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res, 97 (C5) 73737382.

  • Warner, M. J., and R. F. Weiss, 1985: Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep-Sea Res, 32A , 14851497.

    • Search Google Scholar
    • Export Citation
  • Warner, M. J., and R. F. Weiss, 1992: Chlorofluoromethanes in South Atlantic Antarctic Intermediate Water. Deep-Sea Res, 39A , 20532075.

    • Search Google Scholar
    • Export Citation
  • Warner, M. J., J. L. Bullister, D. P. Wisegarver, R. H. Gammon, and R. F. Weiss, 1996: Basin-wide distributions of chlorofluorocarbons F-11 and F-12 in the North Pacific: 1985–1989. J. Geophys. Res, 101 (C9) 2052520542.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., T. M. Hall, and T. W. N. Haine, 2003: Relationships among tracer ages. J. Geophys. Res, 108 , 3138. doi:10.1029/2002JC001325.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., B. A. Warren, W. D. Nowlin Jr., S. B. Rutz, R. D. Pillsbury, and M. I. Moore, 1999: On the deep western-boundary current in the Southwest Pacific Basin. Progress in Oceanography, Vol. 43, Pergamon, 1–54.

    • Search Google Scholar
    • Export Citation
  • Zangenberg, N., and G. Siedler, 1998: Path of the North Atlantic Deep Water in the Brazil Basin. J. Geophys. Res, 103 (C3) 54195428.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 65 2
PDF Downloads 85 39 1

Evaluation of Interior Circulation in a High-Resolution Global Ocean Model. Part I: Deep and Bottom Waters

View More View Less
  • 1 Centre for Environmental Modelling and Prediction, School of Mathematics, University of New South Wales, Sydney, New South Wales, Australia
Restricted access

Abstract

Global watermass ventilation pathways and time scales are investigated using an “eddy permitting” (¼°) offline tracer model. Unlike previous Lagrangian trajectory studies, here an offline model based on a complete tracer equation that includes three-dimensional advection and mixing is employed. In doing so, the authors are able to meaningfully simulate chlorofluorocarbon (CFC) uptake and assess model skill against observation. This is the first time an eddy-permitting model has been subjected to such an assessment of interior ocean ventilation. The offline model is forced by seasonally varying prescribed velocity, temperature, and salinity fields of a state-of-the-art ocean general circulation model. A seasonally varying mixed layer parameterization is incorporated to account for the degradation of surface convection processes resulting from the temporal averaging. A series of CFC simulations are assessed against observations to investigate interdecadal-time-scale ventilation using a variety of mixed layer criteria. Simulated tracer inventories and penetration depths are in good agreement with observations, especially for thermocline, mode, and surface waters. Deep water from the Labrador Sea is well represented, forming a distinct deep western boundary current that branches at the equator, although concentrations are lower than observed. The formation of bottom water, which occurs around the Antarctic margin, is also generally too weak, although there is excellent qualitative agreement with observations in the region of the Ross and Weddell Seas. Multicentury ventilation of the outflow of North Atlantic Deep Water and bottom water from the Antarctic Margin are investigated using 1000-yr passive tracer experiments with specified interior source regions. The model captures many of the detailed pathways evident from observations, with much of the discrepancy accounted for by differences between actual and modeled topography. A comparison between model-derived “tracer age” and Δ14C “advection age” provides a semiquantitative assessment of model skill at these longer time scales.

Corresponding author address: Alex Sen Gupta, Centre for Environmental Modelling and Prediction, School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia. Email: alexg@maths.unsw.edu.au

Abstract

Global watermass ventilation pathways and time scales are investigated using an “eddy permitting” (¼°) offline tracer model. Unlike previous Lagrangian trajectory studies, here an offline model based on a complete tracer equation that includes three-dimensional advection and mixing is employed. In doing so, the authors are able to meaningfully simulate chlorofluorocarbon (CFC) uptake and assess model skill against observation. This is the first time an eddy-permitting model has been subjected to such an assessment of interior ocean ventilation. The offline model is forced by seasonally varying prescribed velocity, temperature, and salinity fields of a state-of-the-art ocean general circulation model. A seasonally varying mixed layer parameterization is incorporated to account for the degradation of surface convection processes resulting from the temporal averaging. A series of CFC simulations are assessed against observations to investigate interdecadal-time-scale ventilation using a variety of mixed layer criteria. Simulated tracer inventories and penetration depths are in good agreement with observations, especially for thermocline, mode, and surface waters. Deep water from the Labrador Sea is well represented, forming a distinct deep western boundary current that branches at the equator, although concentrations are lower than observed. The formation of bottom water, which occurs around the Antarctic margin, is also generally too weak, although there is excellent qualitative agreement with observations in the region of the Ross and Weddell Seas. Multicentury ventilation of the outflow of North Atlantic Deep Water and bottom water from the Antarctic Margin are investigated using 1000-yr passive tracer experiments with specified interior source regions. The model captures many of the detailed pathways evident from observations, with much of the discrepancy accounted for by differences between actual and modeled topography. A comparison between model-derived “tracer age” and Δ14C “advection age” provides a semiquantitative assessment of model skill at these longer time scales.

Corresponding author address: Alex Sen Gupta, Centre for Environmental Modelling and Prediction, School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia. Email: alexg@maths.unsw.edu.au

Save