The Impact of Water Turbidity on Interannual Sea Surface Temperature Simulations in a Layered Global Ocean Model

A. Birol Kara Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by A. Birol Kara in
Current site
Google Scholar
PubMed
Close
,
Harley E. Hurlburt Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Harley E. Hurlburt in
Current site
Google Scholar
PubMed
Close
,
Peter A. Rochford Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Peter A. Rochford in
Current site
Google Scholar
PubMed
Close
, and
James J. O'Brien Center for Ocean–Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida

Search for other papers by James J. O'Brien in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) with an embedded bulk-type mixed layer model is used to examine the effects of ocean turbidity on sea surface temperature (SST) and ocean mixed layer depth (MLD) simulations over the global ocean. The model accounts for ocean turbidity through depth-dependent attenuation of solar radiation in the mixed layer formulation as determined from the diffusive attenuation coefficient at 490 nm (k490) obtained by the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS). Interannual model simulations are used to assess the first-order effects of ocean turbidity on SST and MLD simulation. Results are reported from three model experiments performed using different values for the attenuation of photosynthetically available radiation (kPAR). It is shown that, although allowing incoming solar radiation to vary in time and space is desirable for predicting SST, in an OGCM use of a constant kPAR with a value of 0.06 m−1 is generally sufficient in the deep ocean. The daily averaged SST time series from the three NLOM simulations are verified against daily in situ SSTs reported from 12 moored buoys in 1996 and 1997. Model results show that allowing the possibility of solar heating below the mixed layer reduces the root-mean-square error (rmse) difference between the daily yearlong model and buoy SST time series by up to 0.4°C and reduces the rmse at 11 of the 12 buoy locations. Although using spatially and temporally varying kPAR versus a constant kPAR = 0.06 m−1 (which is representative over most of the global ocean) had low impact overall, using it generally reduced the rmse at low latitudes, and using it can have a substantial impact locally in space and time. The model MLD results show low sensitivity to the kPAR value used.

Current affiliation: Spectral Sciences Incorporated, Burlington, Massachusetts

Corresponding author address: Birol Kara, Naval Research Laboratory, Code 7323, Bldg. 1009, Stennis Space Center, MS 39529-5004. Email: kara@nrlssc.navy.mil

Abstract

The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) with an embedded bulk-type mixed layer model is used to examine the effects of ocean turbidity on sea surface temperature (SST) and ocean mixed layer depth (MLD) simulations over the global ocean. The model accounts for ocean turbidity through depth-dependent attenuation of solar radiation in the mixed layer formulation as determined from the diffusive attenuation coefficient at 490 nm (k490) obtained by the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS). Interannual model simulations are used to assess the first-order effects of ocean turbidity on SST and MLD simulation. Results are reported from three model experiments performed using different values for the attenuation of photosynthetically available radiation (kPAR). It is shown that, although allowing incoming solar radiation to vary in time and space is desirable for predicting SST, in an OGCM use of a constant kPAR with a value of 0.06 m−1 is generally sufficient in the deep ocean. The daily averaged SST time series from the three NLOM simulations are verified against daily in situ SSTs reported from 12 moored buoys in 1996 and 1997. Model results show that allowing the possibility of solar heating below the mixed layer reduces the root-mean-square error (rmse) difference between the daily yearlong model and buoy SST time series by up to 0.4°C and reduces the rmse at 11 of the 12 buoy locations. Although using spatially and temporally varying kPAR versus a constant kPAR = 0.06 m−1 (which is representative over most of the global ocean) had low impact overall, using it generally reduced the rmse at low latitudes, and using it can have a substantial impact locally in space and time. The model MLD results show low sensitivity to the kPAR value used.

Current affiliation: Spectral Sciences Incorporated, Burlington, Massachusetts

Corresponding author address: Birol Kara, Naval Research Laboratory, Code 7323, Bldg. 1009, Stennis Space Center, MS 39529-5004. Email: kara@nrlssc.navy.mil

Save
  • Austin, R. W., and T. J. Petzold, 1986: Spectral dependence of the diffuse attenuation coefficient of light in ocean waters. Opt. Eng., 25 , 471479.

    • Search Google Scholar
    • Export Citation
  • Brock, J. S., and J. S. McClain, 1992: Interannual variability in phytoplankton blooms observed in the northwestern Arabian Sea during the southwest monsoon. J. Geophys. Res., 97 , 733750.

    • Search Google Scholar
    • Export Citation
  • Brock, J. S., S. Sathyendranath, and T. Platt, 1993: Modeling the seasonality of submarine light and primary production in the Arabian Sea. Mar. Ecol. Prog. Ser., 101 , 209221.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., C. C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data, NOAA Atlas NESDIS 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Dickey, T. D., 1983: The influence of optical water type on the diurnal response of the upper ocean. Tellus, 35 , 142154.

  • ECMWF, 1995: User guide to ECMWF products. ECMWF Meteorological Bulletin M3.2, 71 pp. [Available from ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom.].

    • Search Google Scholar
    • Export Citation
  • Freitag, H. P., Y. Feng, L. J. Mangum, M. J. McPhaden, J. Neander, and L. D. Stratton, 1994: Calibration, procedures and instrumental accuracy estimates of TAO temperature, relative humidity and radiation measurements. NOAA Tech. Memo. ERL PMEL-104, 32 pp. [Available from PMEL, 7600 Sand Point Way, Seattle, WA 98115.].

    • Search Google Scholar
    • Export Citation
  • Frouin, R., D. W. Lingner, C. Gautier, K. S. Baker, and R. C. Smith, 1989: A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface. J. Geophys. Res., 94 , 97319742.

    • Search Google Scholar
    • Export Citation
  • Gallimore, R. G., and D. D. Houghton, 1987: Approximation of ocean heat storage by ocean–atmosphere energy exchange: Implications for seasonal cycle mixed layer ocean formulations. J. Phys. Oceanogr., 17 , 12141231.

    • Search Google Scholar
    • Export Citation
  • Garwood, R. W., 1977: An oceanic mixed layer model capable of simulating cyclic states. J. Phys. Oceanogr., 7 , 455468.

  • Gibson, J. K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Re-Analysis Project Rep. Series, No. 1, 72 pp. [Available from ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom.].

    • Search Google Scholar
    • Export Citation
  • Gordon, H. R., and A. W. Wouters, 1978: Some relationships between Secchi depth and inherent optical properties of natural waters. Appl. Opt., 17 , 33413343.

    • Search Google Scholar
    • Export Citation
  • Hellerman, S., and M. Rosenstein, 1983: Normal monthly wind stress over the World Ocean with error estimates. J. Phys. Oceanogr., 13 , 10931104.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., and J. D. Thompson, 1980: A numerical study of Loop Current intrusions and eddy shedding. J. Phys. Oceanogr., 10 , 16111651.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., A. J. Wallcraft, W. J. Schmitz Jr., P. J. Hogan, and E. J. Metzger, 1996: Dynamics of the Kuroshio/Oyashio current system using eddy-resolving models of the North Pacific Ocean. J. Geophys. Res., 101 , 941976.

    • Search Google Scholar
    • Export Citation
  • Jerlov, N. G., 1976: Marine Optics. Elsevier Oceanography Series, Vol. 14, Elsevier, 231 pp.

  • Jerlov, N. G., 1977: Classification of seawaters in terms of quanta irradiance. J. Cons. Int. Explor. Mer., 37 , 281287.

  • Kantha, L. H., and C. A. Clayson, 1994: An improved mixed layer model for geophysical applications. J. Geophys. Res., 99 , 2523525266.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000a: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105 , 1680316821.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000b: Efficient and accurate bulk parameterizations of air–sea fluxes for use in general circulation models. J. Atmos. Oceanic Technol., 17 , 14211438.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000c: Mixed layer depth variability and barrier layer formation over the North Pacific Ocean. J. Geophys. Res., 105 , 1678316801.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2002a: Air–sea flux estimates and the 1997–1998 ENSO event. Bound.-Layer Meteor., 103 , 439458.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2002b: Naval Research Laboratory mixed layer depth (NMLD) climatologies. NRL Rep. NRL/FR/7330/02/9995, 26 pp. [Available from NRL, Code 7323, Bldg. 1009, Stennis Space Center, MS 39529-5004.].

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2003a: Mixed layer depth variability over the global ocean. J. Geophys. Res.,108, 3079, doi:10.1029/2000JC000736.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, 2003b: Climatological SST and MLD predictions from a global layered ocean model with an embedded mixed layer. J. Atmos. Oceanic Technol., 20 , 16161632.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of seasonal thermocline. II. The general theory and its consequences. Tellus, 19 , 98106.

    • Search Google Scholar
    • Export Citation
  • Lalli, C. M., and T. R. Parsons, 1997: Biological Oceanography: An Introduction. Butterworth–Heinemann, 314 pp.

  • Le Treut, H., J. Y. Simonot, and M. Crepon, 1985: A model for the sea surface temperature and heat content in the North Atlantic Ocean. Coupled Ocean–Atmosphere Models, J. Nihoul, Ed., Elsevier, 439–445.

    • Search Google Scholar
    • Export Citation
  • Lewis, M. R., M. E. Carr, G. Feldman, C. McClain, and W. Esaias, 1990: Influence of penetrating radiation on the heat budget of the equatorial Pacific Ocean. Nature, 347 , 543545.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Lin, S-J., W. C. Chao, Y. C. Sud, and G. K. Walker, 1994: A class of the van Leer–type transport schemes and its application to the moisture transport in a general circulation model. Mon. Wea. Rev., 122 , 15751593.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., A. Zhang, and J. K. B. Bishop, 1994: Evaporation and solar irradiance as regulators of sea surface temperature in annual and interannual changes. J. Geophys. Res., 99 , 1262312637.

    • Search Google Scholar
    • Export Citation
  • Martin, P., 1985: Simulation of the mixed layer at OWS November and Papa with several models. J. Geophys. Res., 90 , 903916.

  • McClain, C. R., M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, and N. Kuring, 1998: Science quality SeaWiFS data for global biosphere research. Sea Technol., 39 , 1016.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1995: The Tropical Atmosphere Ocean (TAO) array is completed. Bull. Amer. Meteor. Soc., 76 , 739741.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., and H. E. Hurlburt, 2001: The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea. J. Phys. Oceanogr., 31 , 17121732. Corrigendum, 31, 2807.

    • Search Google Scholar
    • Export Citation
  • Moore, D. R., and A. J. Wallcraft, 1998: Formulation of the NRL Layered Ocean Model in spherical coordinates. NRL Rep. NRL/CR/7323-96-0005, 24 pp. [Available from NRL, Code 7323, Bldg. 1009, Stennis Space Center, MS 39529-5004.].

    • Search Google Scholar
    • Export Citation
  • Morel, A., and D. Antonie, 1994: Heating rate within the upper ocean in relation to its bio–optical state. J. Phys. Oceanogr., 24 , 16521665.

    • Search Google Scholar
    • Export Citation
  • Morel, A., and S. Maritorena, 2001: Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res., 106 , 71637180.

  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116 , 24172424.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., M. Cane, and V. Prasad, 1995: A reduced-gravity, primitive equation, isopycnal ocean GCM: Formulation and simulations. Mon. Wea. Rev., 123 , 28642887.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. Beauchamp, C. R. McClain, M. R. Lewis, and A. Busalacchi, 2002: Effects of penetrative radiation on the upper tropical ocean circulation. J. Climate, 15 , 470486.

    • Search Google Scholar
    • Export Citation
  • Nakamoto, S., S. P. Kumar, J. M. Oberhuber, K. Muneyama, and R. Frouin, 2000: Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model. Geophys. Res. Lett., 27 , 747750.

    • Search Google Scholar
    • Export Citation
  • Nakamoto, S., S. P. Kumar, J. M. Oberhuber, J. Ishizaka, K. Muneyama, and R. Frouin, 2001: Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys. Res. Lett., 28 , 20212024.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models of the upper ocean. Modeling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon Press, 143–172.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., D. A. Siegel, and C. Gautier, 1996: Ocean mixed layer radiant heating and solar penetration: A global analysis. J. Climate, 9 , 22652280.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7 , 952956.

  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling and wind mixing. J. Geophys. Res., 91 , 84118427.

    • Search Google Scholar
    • Export Citation
  • Rochford, P. A., A. B. Kara, A. J. Wallcraft, and R. A. Arnone, 2001: Importance of solar subsurface heating in ocean general circulation models. J. Geophys. Res., 106 , 3092330938.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and Z. Zhu, 1998: Sensitivity of the simulated annual cycle of sea surface temperature in the equatorial Pacific to sunlight penetration. J. Climate, 11 , 19331950.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and A. Loughe, 1995: A reduced-gravity isopycnal ocean model: Hindcasts of El Niño. Mon. Wea. Rev., 123 , 28392863.

  • Simonot, J-Y., and H. Le Treut, 1986: A climatological field of mean optical properties of the World Ocean. J. Geophys. Res., 91 , 66426646.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., and T. D. Dickey, 1981: Alternative parameterizations of downward solar irradiance and their dynamical significance. J. Phys. Oceanogr., 11 , 876882.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., C. W. Fairall, G. L. Geernaert, and L. Hasse, 1996: Air–sea fluxes: 25 years of progress. Bound.-Layer Meteor., 78 , 247290.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., and A. Kattenberg, 1994: Embedding a mixed layer model into an ocean general circulation model of the Atlantic: The importance of surface mixing for heat flux and temperature. J. Geophys. Res., 99 , 1413914157.

    • Search Google Scholar
    • Export Citation
  • Stewart, T. R., 1990: A decomposition of the correlation coefficient and its use in analyzing forecasting skill. Wea. Forecasting, 5 , 661666.

    • Search Google Scholar
    • Export Citation
  • Wallcraft, A. J., 1991: The Navy Layered Ocean Model users guide. NOARL Tech. Rep. 35, 21 pp. [Available from NRL, Code 7323, Bldg. 1009, Stennis Space Center, MS 39529-5004.].

    • Search Google Scholar
    • Export Citation
  • Wallcraft, A. J., and D. R. Moore, 1997: The NRL Layered Ocean Model. Parallel Comput., 23 , 22272242.

  • Wallcraft, A. J., A. B. Kara, H. E. Hurlburt, and P. A. Rochford, 2003: The NRL Layered Global Ocean Model (NLOM) with an embedded mixed layer submodel: Formulation and tuning. J. Atmos. Oceanic Technol., 20 , 16011615.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., 1994: The upper ocean and air–sea interaction in global climate. The Global Climate, J. J. Houghton, Ed., Cambridge University Press, 141–178.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., W. Barkman, and A. Horch, 1984: Solar heating of the oceans, diurnal, seasonal and meridional variation. Quart. J. Roy. Meteor. Soc., 110 , 633656.

    • Search Google Scholar
    • Export Citation
  • Yuen, C. W., J. Y. Cherniawsky, C. A. Lin, and L. A. Mysak, 1992: An upper ocean general circulation model for climate studies: Global simulation with seasonal cycle. Climate Dyn., 7 , 118.

    • Search Google Scholar
    • Export Citation
  • Zaneveld, J. R. V., and R. W. Spinrad, 1980: An arctangent model of irradiance in the sea. J. Geophys. Res., 85 , 49194922.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1186 682 229
PDF Downloads 320 59 10