Near-Surface Turbulence in the Presence of Breaking Waves

Johannes R. Gemmrich Institute of Ocean Sciences, Sidney, British Columbia, Canada

Search for other papers by Johannes R. Gemmrich in
Current site
Google Scholar
PubMed
Close
and
David M. Farmer Institute of Ocean Sciences, Sidney, British Columbia, Canada, and University of Rhode Island, Narragansett, Rhode Island

Search for other papers by David M. Farmer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations with a three-axis pulse-to-pulse coherent acoustic Doppler profiler and acoustic resonators reveal the turbulence and bubble field beneath breaking waves in the open ocean at wind speeds up to 14 m s−1. About 55%–80% of velocity wavenumber spectra, calculated with Hilbert spectral analysis based on empirical mode decomposition, are consistent with an inertial subrange. Time series of turbulent kinetic energy dissipation at approximately 1 m beneath the free surface and 1-Hz sampling rate are obtained. High turbulence levels with dissipation rates more than four orders larger than the background dissipation are linked to wave breaking. Initial dissipation levels beneath breaking waves yield the Hinze scale of the maximum bubble size aH ≅ 2 × 10−3 m. Turbulence induced by discrete breaking events was observed to decay as ε ∝ tn, where n = −4.3 is close to the theoretical value for isotropic turbulence (−17/4). In the crest region above the mean waterline, dissipation increases as ε(z) ∝ z2.3. Depth-integrated dissipation in the crest region is more than 2 times the depth-integrated dissipation in the trough region. Adjusting the surface definition in common turbulence models to reflect the observed dissipation profile improves the agreement between modeled and observed dissipation. There is some evidence that turbulent dissipation increases above the background level prior to the air entrainment. The magnitude and occurrence of the prebreaking turbulence are consistent with wave–turbulence interaction in a rotational wave field.

Corresponding author address: J. Gemmrich, Institute of Ocean Sciences, P.O. Box 6000, Sidney, BC V8L 4B2, Canada. Email: gemmrich@uvic.ca

Abstract

Observations with a three-axis pulse-to-pulse coherent acoustic Doppler profiler and acoustic resonators reveal the turbulence and bubble field beneath breaking waves in the open ocean at wind speeds up to 14 m s−1. About 55%–80% of velocity wavenumber spectra, calculated with Hilbert spectral analysis based on empirical mode decomposition, are consistent with an inertial subrange. Time series of turbulent kinetic energy dissipation at approximately 1 m beneath the free surface and 1-Hz sampling rate are obtained. High turbulence levels with dissipation rates more than four orders larger than the background dissipation are linked to wave breaking. Initial dissipation levels beneath breaking waves yield the Hinze scale of the maximum bubble size aH ≅ 2 × 10−3 m. Turbulence induced by discrete breaking events was observed to decay as ε ∝ tn, where n = −4.3 is close to the theoretical value for isotropic turbulence (−17/4). In the crest region above the mean waterline, dissipation increases as ε(z) ∝ z2.3. Depth-integrated dissipation in the crest region is more than 2 times the depth-integrated dissipation in the trough region. Adjusting the surface definition in common turbulence models to reflect the observed dissipation profile improves the agreement between modeled and observed dissipation. There is some evidence that turbulent dissipation increases above the background level prior to the air entrainment. The magnitude and occurrence of the prebreaking turbulence are consistent with wave–turbulence interaction in a rotational wave field.

Corresponding author address: J. Gemmrich, Institute of Ocean Sciences, P.O. Box 6000, Sidney, BC V8L 4B2, Canada. Email: gemmrich@uvic.ca

Save
  • Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams III, W. M. Drennan, K. K. Kahma, and S. A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359 , 219220.

    • Search Google Scholar
    • Export Citation
  • Anis, A., and J. N. Moum, 1992: The superadiabatic surface layer of the ocean during convection. J. Phys. Oceanogr, 22 , 12211227.

  • Anis, A., and J. N. Moum, 1995: Surface wave–turbulence interactions: Scaling ε(z) near the sea surface. J. Phys. Oceanogr, 25 , 20252045.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., J. R. Gemmrich, and D. M. Farmer, 2002: Multiscale measurements of ocean wave breaking probability. J. Phys. Oceanogr, 32 , 33643375.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., 2001: Simulating the wave-enhanced layer under breaking surface waves with two-equation turbulence models. J. Phys. Oceanogr, 31 , 31333145.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr, 24 , 25462559.

  • Deane, G. B., and M. D. Stokes, 2002: Scale dependence of bubble creation mechanisms in breaking waves. Nature, 418 , 839844.

  • Drennan, W. M., K. K. Kahma, E. A. Terray, M. A. Donelan, and S. A. Kitaigorodskii, 1991: Observations of the enhancement of kinetic energy dissipation beneath breaking wind waves. IUTAM Symposium on Breaking Waves, M. L. Banner and R. H. J. Grimshaw, Eds., Springer-Verlag, 95–101.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., M. A. Donelan, E. A. Terray, and K. B. Katsaros, 1996: Oceanic turbulence measurements in SWADE. J. Phys. Oceanogr, 26 , 808815.

    • Search Google Scholar
    • Export Citation
  • Duncan, J. D., 2001: Spilling breakers. Annu. Rev. Fluid Mech, 33 , 517547.

  • Farmer, D. M., S. Vagle, and A. D. Booth, 1998: A free-flooding acoustical resonator for measurement of bubble size distribution. J. Atmos. Oceanic Technol, 15 , 11321146.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., M. Li, and D. M. Farmer, 2000: The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr, 30 , 21632171.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., 2000: Temperature anomalies beneath breaking waves and the decay of wave-induced turbulence. J. Geophys. Res, 105 , 87278736.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and D. M. Farmer, 1999a: Near-surface turbulence and thermal structure in a wind-driven sea. J. Phys. Oceanogr, 29 , 480499.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and D. M. Farmer, 1999b: Observations of the scale and occurrence of breaking surface waves. J. Phys. Oceanogr, 29 , 25952606.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., T. D. Mudge, and V. D. Polonichko, 1994: On the energy input form wind to surface waves. J. Phys. Oceanogr, 24 , 24132417.

    • Search Google Scholar
    • Export Citation
  • Greenan, B. J. W., N. S. Oakey, and F. W. Dobson, 2001: Estimates of dissipation in the ocean mixed layer using a quasi-horizontal microstructure profile. J. Phys. Oceanogr, 31 , 9921004.

    • Search Google Scholar
    • Export Citation
  • Hinze, J. O., 1975: Turbulence. 2d ed. McGraw-Hill, 790 pp.

  • Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, Q. Zheng, N-C. Yen, C. C. Tung, and H. H. Liu, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. Roy. Soc. London, 454A , 903955.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., Z. Shen, and S. R. Long, 1999: A new view of nonlinear water waves: The Hilbert spectrum. Annu. Rev. Fluid Mech, 31 , 417517.

    • Search Google Scholar
    • Export Citation
  • Lamarre, E., and W. K. Melville, 1994: Void-fraction measurements and sound-speed fields in bubble plumes generated by breaking waves. J. Acoust. Soc. Amer, 95 , 13171328.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., F. Wolk, and H. Yamazaki, 2002: Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr, 58 , 153174.

    • Search Google Scholar
    • Export Citation
  • Lumley, J. L., and E. A. Terray, 1983: Kinematics of turbulence converted by a random wave field. J. Phys. Oceanogr, 13 , 20002007.

  • Melville, W. K., 1996: The role of surface-wave breaking in air–sea interaction. Annu. Rev. Fluid Mech, 26 , 279321.

  • Melville, W. K., and P. Matusov, 2002: Distribution of breaking waves at the ocean surface. Nature, 417 , 5852.

  • Melville, W. K., F. Veron, and C. J. White, 2002: The velocity field under breaking waves: Coherent structure and turbulence. J. Fluid Mech, 454 , 203233.

    • Search Google Scholar
    • Export Citation
  • Oakey, N., 1985: Statistics of mixing parameters in the upper ocean during JASIN phases 2. J. Phys. Oceanogr, 15 , 16621675.

  • Ruddick, B., A. Anis, and K. Thompson, 2000: Maximum likelihood spectral fitting: The Batchelor spectrum. J. Atmos. Oceanic Technol, 17 , 15411555.

    • Search Google Scholar
    • Export Citation
  • Siddiqui, M. H. K., M. R. Loewen, C. Richardson, W. F. Asher, and A. T. Jessup, 2001: Simultaneous particle image velocimetry and infrared imagery of microscale breaking waves. Phys. Fluids, 13 , 18911903.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 2003: Observation of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res, 50 , 371395.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., N. V. Vershinsky, and V. A. Bezverchnii, 1988: Small-scale turbulence measurements in the surface layer of the ocean. Deep-Sea Res, 35 , 18591874.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., R. Lukas, P. Hacker, M. Backer, H. Schoeberlein, and A. Arjannikov, 1999: A near-surface microstructure system used during TOGA COARE: Part II. J. Atmos. Oceanic Technol, 16 , 15981618.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. W., and H. L. Grant, 1962: Determining the rate of dissipation of turbulent energy near the surface in the presence of waves. J. Geophys. Res, 67 , 31763180.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., and S. Belcher, 2002: On the distortion of turbulence by a progressive surface wave. J. Fluid Mech, 458 , 229267.

  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams III, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr, 26 , 792807.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., W. M. Drennan, and M. A. Donelan, 1999: The vertical structure of shear and dissipation in the ocean surface layer. The Wind-Driven Air–Sea Interface: Electromagnetic and Acoustic Sensing, Wave Dynamics and Turbulent Fluxes, M. L. Banner, Ed., School of Mathematics, University of New South Wales, 239– 245.

    • Search Google Scholar
    • Export Citation
  • Thais, L., and J. Magnaudet, 1996: Turbulent structure beneath surface gravity waves sheared by the wind. J. Fluid Mech, 328 , 313344.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1995: Dynamical processes of transfer at the sea surface. Progress in Oceanography, Vol. 35, Pergamon, 315–352.

  • Thorpe, S. A., T. R. Osborn, J. F. E. Jackson, A. J. Hall, and R. G. Lueck, 2003: Measurements of turbulence in the upper-ocean mixing layer using Autosub. J. Phys. Oceanogr, 33 , 122145.

    • Search Google Scholar
    • Export Citation
  • Trevorrow, M. V., 1994: Measurement of ocean wave directional spectra using Doppler side-scan sonar arrays. J. Atmos. Oceanic Technol, 12 , 603616.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res, 61 , 235265.

  • Veron, F., and W. K. Melville, 1999: Pulse-to-pulse coherent Doppler measurements of waves and turbulence. J. Atmos. Oceanic Technol, 16 , 15801597.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1992: Individual characteristics of whitecaps and volumetric description of bubbles. IEEE J. Oceanic Eng, 17 , 150158.

  • Zedel, L., A. E. Hay, R. Cabrera, and A. Lohrmann, 1996: Performance of a single-beam pulse-to-pulse coherent Doppler profiler. IEEE J. Oceanic Eng, 21 , 290297.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 900 316 52
PDF Downloads 530 149 22