Wind Energy Input to the Surface Waves

Wei Wang Physical Oceanography Laboratory, Ocean University of China, Qingdao, Shandong, China

Search for other papers by Wei Wang in
Current site
Google Scholar
PubMed
Close
and
Rui Xin Huang Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Rui Xin Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wind energy input into the ocean is primarily produced through surface waves. The total rate of this energy source, integrated over the World Ocean, is estimated at 60 TW, based on empirical formulas and results from a numerical model of surface waves. Thus, surface wave energy input is about 50 times the energy input to the surface geostrophic current and 20 times the total tidal dissipation rate. Most of the energy input is concentrated within the Antarctic Circumpolar Current.

Corresponding author address: R. X. Huang, Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: rhuang@whoi.edu

Abstract

Wind energy input into the ocean is primarily produced through surface waves. The total rate of this energy source, integrated over the World Ocean, is estimated at 60 TW, based on empirical formulas and results from a numerical model of surface waves. Thus, surface wave energy input is about 50 times the energy input to the surface geostrophic current and 20 times the total tidal dissipation rate. Most of the energy input is concentrated within the Antarctic Circumpolar Current.

Corresponding author address: R. X. Huang, Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: rhuang@whoi.edu

Save
  • Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett.,30, 1424, doi:10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr, 24 , 2546–2559.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., M. A. Donelan, E. A. Terray, and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr, 26 , 808–815.

    • Search Google Scholar
    • Export Citation
  • Faller, A., 1966: Sources of energy for ocean circulation and a theory of the mixed layer. Proc. Fifth U.S. National Congress of Applied Mechanics, Minneapolis, MN, ASME, 651–672.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., T. D. Mudge, and V. D. Polonchicko, 1994: On the energy input from wind to surface waves. J. Phys. Oceanogr, 24 , 2413–2417.

    • Search Google Scholar
    • Export Citation
  • Lueck, R., and R. Reid, 1984: On the production and dissipation of mechanical energy in the ocean. J. Geophys. Res, 89 , 3439–3445.

    • Search Google Scholar
    • Export Citation
  • Maat, N., C. Kraan, and W. A. Oost, 1991: The roughness of wind waves. Bound-Layer Meteor, 54 , 89–103.

  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. 2d ed. Cambridge University Press, 336 pp.

  • Terray, E. A., M. A. Donelan, Y. C. Agraval, W. M. Drennan, K. K. Kahma, A. J. Williams III, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr, 26 , 792–807.

    • Search Google Scholar
    • Export Citation
  • Toba, Y., 1974: Duality of turbulence and wave in wind waves. J. Oceanogr. Soc. Japan, 30 , 33–34.

  • Wang, W., and R. X. Huang, 2004: Wind energy input to the Ekman layer. J. Phys. Oceanogr, 34 , 1267–1275.

  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motion in the surface mixed layer. Geophys. Res. Lett.,29, 1239, doi:10.1029/2001GL04422.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1982: Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res, 87 , 9704–9706.

  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr, 28 , 2332–2340.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 950 320 114
PDF Downloads 583 151 14