Finescale Shear at 1660 and 2850 dbar over the Mid-Atlantic Ridge in the Eastern Brazil Basin

Timothy F. Duda Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Timothy F. Duda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two drifting Shearmeter instruments have provided records of the magnitude of shear (the magnitude of the vertical derivative of horizontal velocity), measured over a 10-m aperture, in the vicinity of the Brazil Basin Tracer Release Experiment. The floats drifted at roughly 1660 and 2850 dbar, where the buoyancy frequencies were N = 1.1 and 0.5 cph, respectively. Two additional floats provided deep trajectories but no shear data. The records of hourly mean values of shear magnitude (with mean values denoted Sh) exhibit strong temporal variability, with time scales comparable to those of fortnightly tidal modulation. The deep record exhibits stronger mean Sh near the seafloor than above, with the exception of the bin closest to the seafloor; Sh from neither float correlates strictly with tidal forcing. Shallow Sh varies in apparent response to atmospheric forcing. The mean squared shear of the shallow record is 4 times the N-dependent value associated with the Garrett–Munk spectral model, and that of the deep record is 6.4 times the comparable model value. The enhancement of Sh within 1000 m of the bottom suggests a bottom source for internal waves. A moderate correlation between tides and Sh for this small dataset provides an estimate of the relative importance of tidal versus subtidal forcing of such bottom-generated waves, although the data are limited.

Corresponding author address: Tim Duda, AOPE Department, MS 11, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: tduda@whoi.edu

Abstract

Two drifting Shearmeter instruments have provided records of the magnitude of shear (the magnitude of the vertical derivative of horizontal velocity), measured over a 10-m aperture, in the vicinity of the Brazil Basin Tracer Release Experiment. The floats drifted at roughly 1660 and 2850 dbar, where the buoyancy frequencies were N = 1.1 and 0.5 cph, respectively. Two additional floats provided deep trajectories but no shear data. The records of hourly mean values of shear magnitude (with mean values denoted Sh) exhibit strong temporal variability, with time scales comparable to those of fortnightly tidal modulation. The deep record exhibits stronger mean Sh near the seafloor than above, with the exception of the bin closest to the seafloor; Sh from neither float correlates strictly with tidal forcing. Shallow Sh varies in apparent response to atmospheric forcing. The mean squared shear of the shallow record is 4 times the N-dependent value associated with the Garrett–Munk spectral model, and that of the deep record is 6.4 times the comparable model value. The enhancement of Sh within 1000 m of the bottom suggests a bottom source for internal waves. A moderate correlation between tides and Sh for this small dataset provides an estimate of the relative importance of tidal versus subtidal forcing of such bottom-generated waves, although the data are limited.

Corresponding author address: Tim Duda, AOPE Department, MS 11, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: tduda@whoi.edu

Save
  • Armi, L., 1978: Some evidence for boundary mixing in the deep ocean. J. Geophys. Res, 83 , 19711979.

  • Balmforth, N. J., G. R. Ireley, and W. R. Young, 2002: Tidal conversion by subcritical topography. J. Phys. Oceanogr, 32 , 29002914.

  • Bell, T. H. J., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res, 80 , 320327.

  • Duda, T. F., and C. S. Cox, 1989: Vertical wave number spectra of velocity and shear at small internal wave scales. J. Geophys. Res, 94 , 939950.

    • Search Google Scholar
    • Export Citation
  • Duda, T. F., and D. C. Jacobs, 1995: Comparison of shear measurements and mixing predictions with a direct observation of diapycnal mixing in the Atlantic thermocline. J. Geophys. Res, 100 , 1341813498.

    • Search Google Scholar
    • Export Citation
  • Duda, T. F., and D. C. Webb, 1997: The drifting, rotating deep-ocean shearmeter. Oceans '97 Conf. Proc., Halifax, NS, Canada, MTS/IEEE, 796–801.

    • Search Google Scholar
    • Export Citation
  • Duda, T. F., B. J. Guest, C. M. Wooding, C. M. Jones, S. Lelievre, and D. C. Webb, 2002: Shearmeter floats in the area of the WHOI Brazil Basin Tracer Release Experiment: Technical and oceanographic data. WHOI Tech. Rep. WHOI-2002-01, 44 pp.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., A. F. Bennett, and M. G. G. Foreman, 1994: TOPEX/ Poseidon tides estimated using a global inverse model. J. Geophys. Res, 99 , 2482124852.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1998: Waves, mixing and transports over sloping boundaries. Physical Processes in Lakes and Oceans, J. Imberger, Ed., Amer. Geophys. Union, 305–338.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Goodman, L., and E. R. Levine, 1990: Vertical motion of neutrally buoyant floats. J. Atmos. Oceanic Technol, 7 , 3849.

  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res, 94 , 96869698.

  • Gregg, M. C., 1998: Estimation and geography of diapycnal mixing in the stratified ocean. Physical Processes in Lakes and Oceans, J. Imberger, Ed., Amer. Geophys. Union, 305–338.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and T. B. Sanford, 1988: The dependence of turbulent dissipation on stratification in a diffusively stable thermocline. J. Geophys. Res, 93 , 1238112392.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and E. Kunze, 1991: Shear and strain in Santa Monica Basin. J. Geophys. Res, 96 , 1670916719.

  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flux through the internal wave field: An eikonal approach. J. Geophys. Res, 91 , 84878495.

    • Search Google Scholar
    • Export Citation
  • Hogg, N., and W. B. Owens, 1999: Direct measurements of the deep circulation within the Brazil Basin. Deep-Sea Res, 46B , 335353.

  • Hogg, N., P. Biscaye, W. Gardner, and W. J. J. Schmitz, 1982: On the transport and modification of Antarctic Bottom Water in the Vema Channel. J. Mar. Res, 40 , (Suppl.),. 231263.

    • Search Google Scholar
    • Export Citation
  • Ivey, G. N., 1987: The role of boundary mixing in the deep ocean. J. Geophys. Res, 92 , 1187311878.

  • Johnson, C. L., and T. B. Sanford, 1980: Anomalous behavior of internal gravity waves near Bermuda. J. Phys. Oceanogr, 10 , 20212034.

  • Koopmans, L. H., 1974: The Spectral Analysis of Time Series. Academic Press, 366 pp.

  • Kunze, E., and T. B. Sanford, 1996: Abyssal mixing: Where it is not. J. Phys. Oceanogr, 26 , 22862296.

  • Kunze, E., M. G. Briscoe, and A. J. Williams III, 1991a: Interpreting shear and strain fine structure from a neutrally buoyant float. J. Geophys. Res, 95 , 1811118125.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., A. J. Williams III, and M. G. Briscoe, 1991b: Observations of shear and vertical stability from a neutrally buoyant float. J. Geophys. Res, 95 , 1812718142.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res, 103 , 2149921529.

  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abbysal ocean. Nature, 403 , 179182.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. R. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr, 32 , 15541566.

  • Luther, D. S., J. H. Filloux, and A. D. Chave, 1991: Low-frequency, motionally induced electromagnetic fields in the ocean. Part II: Electric field and Eulerian current comparison. J. Geophys. Res, 96 , 1279712814.

    • Search Google Scholar
    • Export Citation
  • Luyten, J., M. McCartney, H. Stommel, R. Dickson, and E. Gmitrowicz, 1993: On the sources of North Atlantic Deep Water. J. Phys. Oceanogr, 23 , 18851892.

    • Search Google Scholar
    • Export Citation
  • Morris, M., M. M. Hall, L. C. St. Laurent, and N. Hogg, 2001: Abyssal mixing in the Brazil Basin. J. Phys. Oceanogr, 31 , 1205712069.

  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res, 13 , 707730.

  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., The MIT Press, 264–291.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr, 10 , 8389.

  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr, 25 , 306328.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 , 9396.

    • Search Google Scholar
    • Export Citation
  • Rossby, H. T., D. Dorson, and J. Fontaine, 1986: The RAFOS System. J. Atmos. Oceanic Technol, 3 , 672679.

  • Sanford, T. B., 1991: Spatial structure of thermocline and abyssal internal waves. The Dynamics of Oceanic Internal Waves: Proc. 'Aha Huliko'a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 109–141.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277 , 19571962.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr, 32 , 28822899.

  • St. Laurent, L., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr, 31 , 34763495.

    • Search Google Scholar
    • Export Citation
  • Whitehead, J. A. J., 1987: On the ratio of the mixing coefficients of heat and salt of Antarctic Bottom Water in the North Atlantic. J. Geophys. Res, 92 , 29812984.

    • Search Google Scholar
    • Export Citation
  • Whitehead, J. A. J., and L. V. Worthington, 1982: The flux and mixing rates of Antarctic Bottom Water within the North Atlantic. J. Geophys. Res, 87 , 79037924.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 300 46 16
PDF Downloads 48 33 2