The Global S1 Tide

Richard D. Ray Laboratory for Terrestrial Physics, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Richard D. Ray in
Current site
Google Scholar
PubMed
Close
and
Gary D. Egbert College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Gary D. Egbert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The small S1 ocean tide is caused primarily by diurnal atmospheric pressure loading. Its excitation is therefore unlike any other diurnal tide; in particular, pressure loading is maximum near the equator where the diurnal gravitational potential is zero. The global character of the S1 tide is here determined by numerical modeling and by analysis of Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter data. The two approaches yield reasonably consistent results. Amplitudes exceeding 1 cm in several regions are further confirmed by comparison with coastal tide gauges. Notwithstanding their excitation differences, S1 and other diurnal tides are found to share several common features, such as relatively large amplitudes in the Arabian Sea, the Labrador Sea, the Sea of Okhotsk, and the Gulf of Alaska. The most noticeable difference is the lack of an S1 Antarctic Kelvin wave. These similarities and differences can be explained in terms of the coherences between near-diurnal oceanic normal modes and the underlying tidal forcings. Whereas gravitational diurnal tidal forces excite primarily a 28-h Antarctic–Pacific mode, the S1 air tide excites several other near-diurnal modes, none of which has large amplitudes near Antarctica.

Corresponding author address: Richard D. Ray, NASA/GSFC, Code 926, Greenbelt, MD 20771. Email: richard.ray@gsfc.nasa.gov

Abstract

The small S1 ocean tide is caused primarily by diurnal atmospheric pressure loading. Its excitation is therefore unlike any other diurnal tide; in particular, pressure loading is maximum near the equator where the diurnal gravitational potential is zero. The global character of the S1 tide is here determined by numerical modeling and by analysis of Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter data. The two approaches yield reasonably consistent results. Amplitudes exceeding 1 cm in several regions are further confirmed by comparison with coastal tide gauges. Notwithstanding their excitation differences, S1 and other diurnal tides are found to share several common features, such as relatively large amplitudes in the Arabian Sea, the Labrador Sea, the Sea of Okhotsk, and the Gulf of Alaska. The most noticeable difference is the lack of an S1 Antarctic Kelvin wave. These similarities and differences can be explained in terms of the coherences between near-diurnal oceanic normal modes and the underlying tidal forcings. Whereas gravitational diurnal tidal forces excite primarily a 28-h Antarctic–Pacific mode, the S1 air tide excites several other near-diurnal modes, none of which has large amplitudes near Antarctica.

Corresponding author address: Richard D. Ray, NASA/GSFC, Code 926, Greenbelt, MD 20771. Email: richard.ray@gsfc.nasa.gov

Save
  • Accad, Y., and C. L. Pekeris, 1978: Solution of the tidal equations for the M2 and S2 tides in the World Ocean from a knowledge of the tidal potential alone. Philos. Trans. Roy. Soc. London, A290 , 235–266.

    • Search Google Scholar
    • Export Citation
  • Cartwright, D. E., and R. J. Tayler, 1971: New computations of the tide-generating potential. Geophys. J. Roy. Astron. Soc, 23 , 45–74.

    • Search Google Scholar
    • Export Citation
  • Cartwright, D. E., and A. C. Edden, 1973: Corrected tables of tidal harmonics. Geophys. J. Roy. Astron. Soc, 33 , 253–264.

  • Cartwright, D. E., and R. D. Ray, 1991: Energetics of global ocean tides from Geosat altimetry. J. Geophys. Res, 96 , 16897–16912.

    • Search Google Scholar
    • Export Citation
  • Chao, B. F., and R. D. Ray, 1997: Oceanic tidal angular momentum and Earth's rotation variations. Progress in Oceanography, Vol. 40, Pergamon, 399–421.

    • Search Google Scholar
    • Export Citation
  • Chao, B. F., R. D. Ray, J. M. Gipson, G. D. Egbert, and C. Ma, 1996: Diurnal/ semidiurnal polar motion excited by oceanic tidal angular momentum. J. Geophys. Res, 101 , 20151–20163.

    • Search Google Scholar
    • Export Citation
  • Chapman, S., and R. S. Lindzen, 1970: Atmospheric Tides. Reidel, 200 pp.

  • Dai, A., and C. Deser, 1999: Diurnal and semidiurnal variations in global surface wind and divergence fields. J. Geophys. Res, 104 , 31109–31125.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and J. Wang, 1999: Diurnal and semidiurnal tides in global surface pressure data. J. Atmos. Sci, 56 , 3874–3891.

  • Dehant, V., M. Feissel-Vernier, O. de Viron, C. Ma, M. Yseboodt, and C. Bizouard, 2003: Remaining error sources in the nutation at the submilliarc second level. J. Geophys. Res.,108, 2275, doi: 10.1029/2002JB001763.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and C. A. Smith, 1998: Diurnal and semidiurnal variations of the surface wind field over the tropical Pacific Ocean. J. Climate, 11 , 1730–1748.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1975: Meteorology of the upper atmosphere. Rev. Geophys. Space Phys, 13 , 771–790.

  • Doodson, A. T., 1928: The analysis of tidal observations. Philos. Trans. Roy. Soc. London, A227 , 223–279.

  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol, 19 , 183–204.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., R. D. Ray, and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res, 109 .C03003, doi:10.1029/2003JC001973.

    • Search Google Scholar
    • Export Citation
  • Forbes, J. M., 1982: Atmospheric tides 1. Model description and results for the solar diurnal component. J. Geophys. Res, 87 , 5222–5240.

    • Search Google Scholar
    • Export Citation
  • Foreman, M. G. G., 1977: Manual for tidal heights analysis and prediction (rev. 1996). Pacific Marine Science Rep. 77-10, Institute of Ocean Sciences, Victoria, BC, Canada, 58 pp.

    • Search Google Scholar
    • Export Citation
  • Gordeev, R. G., B. A. Kagan, and E. V. Polyakov, 1977: The effects of loading and self-attraction on global ocean tides: The model and the results of a numerical experiment. J. Phys. Oceanogr, 7 , 161–170.

    • Search Google Scholar
    • Export Citation
  • Halpern, D., and R. K. Reed, 1976: Heat budget of the upper ocean under light winds. J. Phys. Oceanogr, 6 , 972–975.

  • Haurwitz, B., and A. D. Cowley, 1973: The diurnal and semidiurnal barometric oscillations, global distribution and annual variation. Pure Appl. Geophys, 102 , 193–222.

    • Search Google Scholar
    • Export Citation
  • Hendershott, M. C., 1972: The effects of solid earth deformation on global ocean tides. Geophys. J. Roy. Astron. Soc, 29 , 389–402.

    • Search Google Scholar
    • Export Citation
  • Hsu, H-H., and B. J. Hoskins, 1989: Tidal fluctuations as seen in ECMWF data. Quart. J. Roy. Meteor. Soc, 115 , 247–264.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437–471.

  • Koblinsky, C. J., B. D. Beckley, R. D. Ray, Y-M. Wang, L. Tsaoussi, A. Brenner, and R. Williamson, 1999: NASA Ocean Altimeter Pathfinder Project, report 1: Data processing handbook. NASA Tech. Memo. 208605, 55 pp.

    • Search Google Scholar
    • Export Citation
  • Kowalik, Z., and I. Polyakov, 1998: Tides in the Sea of Okhotsk. J. Phys. Oceanogr, 28 , 1389–1409.

  • Marshall, J. A., and S. B. Luthcke, 1994: Modeling radiation forces acting on TOPEX/Poseidon for precise orbit determination. J. Spacecr. Rockets, 31 , 89–105.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. A., N. P. Zelensky, S. M. Klosko, D. S. Chinn, S. B. Luthcke, K. E. Rachlin, and R. G. Williamson, 1995: The temporal and spatial characteristics of TOPEX/Poseidon radial orbit error. J. Geophys. Res, 100 , 25331–25352.

    • Search Google Scholar
    • Export Citation
  • Mathews, P. M., T. A. Herring, and B. A. Buffett, 2002: Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the earth's interior. J. Geophys. Res.,107, 2068, doi: 10.1029/2001JB000390.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and D. E. Cartwright, 1966: Tidal spectroscopy and prediction. Philos. Trans. Roy. Soc. London, 259 , 533–581.

  • Pattiaratchi, C., B. Hegge, J. Gould, and I. Eliot, 1997: Impact of sea-breeze activity on nearshore and foreshore processes in southwestern Australia. Cont. Shelf Res, 17 , 1539–1560.

    • Search Google Scholar
    • Export Citation
  • Platzman, G. W., 1984a: Normal modes of the World Ocean. Part III. A procedure for tidal synthesis. J. Phys. Oceanogr, 14 , 1521–1531.

    • Search Google Scholar
    • Export Citation
  • Platzman, G. W., 1984b: Normal modes of the World Ocean. Part IV: Synthesis of diurnal and semidiurnal tides. J. Phys. Oceanogr, 14 , 1532–1550.

    • Search Google Scholar
    • Export Citation
  • Platzman, G. W., 1985: Normal modes of the World Ocean: Maps and tables. University of Chicago, Dept. Geophysical Sciences, 97 pp.

  • Platzman, G. W., 1991: Tidal evidence for ocean normal modes. Tidal Hydrodynamics, B. B. Parker, Ed., John Wiley and Sons, 13–26.

    • Search Google Scholar
    • Export Citation
  • Platzman, G. W., G. A. Curtis, K. S. Hansen, and R. D. Slater, 1981: Normal modes of the World Ocean. Part II: Description of modes in the period range 8 to 80 hours. J. Phys. Oceanogr, 11 , 579–603.

    • Search Google Scholar
    • Export Citation
  • Ponchaut, F., F. Lyard, and C. Le Provost, 2001: An analysis of the tidal signal in the WOCE sea level dataset. J. Atmos. Oceanic Technol, 18 , 77–91.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., and R. D. Ray, 2002: Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides. Geophys. Res. Lett, 29 , 2153.

    • Search Google Scholar
    • Export Citation
  • Quartley, G. D., T. H. Guymer, and M. A. Srokosz, 1996: The effects of rain on TOPEX radar altimeter data. J. Atmos. Oceanic Technol, 13 , 1209–1229.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 1998: Diurnal oscillations in atmospheric pressure at twenty-five small oceanic islands. Geophys. Res. Lett, 25 , 3851–3854.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 1999: A global ocean tide model from TOPEX/Poseidon altimetry: GOT99. 2. NASA Tech. Memo. 209478, 58 pp.

  • Ray, R. D., and R. M. Ponte, 2003: Barometric tides from ECMWF operational analyses:. Ann. Geophys, 21 , 1897–1910.

  • Schrama, E. J. O., and R. D. Ray, 1994: A preliminary tidal analysis of TOPEX/Poseidon altimetry. J. Geophys. Res, 99 , 24799–24808.

    • Search Google Scholar
    • Export Citation
  • Schureman, P., 1940: Manual of Harmonic Analysis and Prediction of Tides. U.S. Government Printing Office, 317 pp.

  • Seiler, U., 1991: Periodic changes of the angular momentum budget due to the tides of the World Ocean. J. Geophys. Res, 96 , 10287–10300.

    • Search Google Scholar
    • Export Citation
  • Simon, J. L., P. Bretagnon, J. Chapront, M. Chapront-Touze, G. Francou, and J. Laskar, 1994: Numerical expressions for precession formulae and mean elements for the Moon and the planets. Astron. Astrophys, 282 , 663–683.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 2000: The diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere. Geophys. Res. Lett, 27 , 2173–2176.

    • Search Google Scholar
    • Export Citation
  • Vial, F., F. Lott, and H. Teitelbaum, 1994: A possible signal of the El Niño–Southern Oscillation in time series of the diurnal tide. Geophys. Res. Lett, 21 , 1603–1606.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, and D. L. Hartmann, 2002: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett.,29, 2092, doi: 10.1029/2002GL015371.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and D. Stammer, 1995: The global frequency-wavenumber spectrum of oceanic variability estimated from TOPEX/Poseidon altimetric measurements. J. Geophys. Res, 100 , 24895–24910.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 588 167 18
PDF Downloads 421 135 12