A New Solar Radiation Penetration Scheme for Use in Ocean Mixed Layer Studies: An Application to the Black Sea Using a Fine-Resolution Hybrid Coordinate Ocean Model (HYCOM)

A. Birol Kara Naval Research Laboratory, Oceanography Division, Stennis Space Center, Mississippi

Search for other papers by A. Birol Kara in
Current site
Google Scholar
PubMed
Close
,
Alan J. Wallcraft Naval Research Laboratory, Oceanography Division, Stennis Space Center, Mississippi

Search for other papers by Alan J. Wallcraft in
Current site
Google Scholar
PubMed
Close
, and
Harley E. Hurlburt Naval Research Laboratory, Oceanography Division, Stennis Space Center, Mississippi

Search for other papers by Harley E. Hurlburt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A 1/25° × 1/25° cos(lat) (longitude × latitude) (≈3.2-km resolution) eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) is introduced for the Black Sea and used to examine the effects of ocean turbidity on upper-ocean circulation features including sea surface height and mixed layer depth (MLD) on annual mean climatological time scales. The model is a primitive equation model with a K-profile parameterization (KPP) mixed layer submodel. It uses a hybrid vertical coordinate that combines the advantages of isopycnal, σ, and z-level coordinates in optimally simulating coastal and open-ocean circulation features. This model approach is applied to the Black Sea for the first time. HYCOM uses a newly developed time-varying solar penetration scheme that treats attenuation as a continuous quantity. This scheme includes two bands of solar radiation penetration, one that is needed in the top 10 m of the water column and another that penetrates to greater depths depending on the turbidity. Thus, it is suitable for any ocean general circulation model that has fine vertical resolution near the surface. With this scheme, the optical depth–dependent attenuation of subsurface heating in HYCOM is given by monthly mean fields for the attenuation of photosynthetically active radiation (kPAR) during 1997–2001. These satellite-based climatological kPAR fields are derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) data for the spectral diffuse attenuation coefficient at 490 nm (k490) and have been processed to have the smoothly varying and continuous coverage necessary for use in the Black Sea model applications. HYCOM simulations are driven by two sets of high-frequency climatological forcing, but no assimilation of ocean data is then used to demonstrate the importance of including spatial and temporal varying attenuation depths for the annual mean prediction of upper-ocean quantities in the Black Sea, which is very turbid (kPAR > 0.15 m−1, in general). Results are reported from three model simulations driven by each atmospheric forcing set using different values for the kPAR. A constant solar-attenuation optical depth of ≈17 m (clear water assumption), as opposed to using spatially and temporally varying attenuation depths, changes the surface circulation, especially in the eastern Black Sea. Unrealistic sub–mixed layer heating in the former results in weaker stratification at the base of the mixed layer and a deeper MLD than observed. As a result, the deep MLD off Sinop (at around 42.5°N, 35.5°E) weakens the surface currents regardless of the atmospheric forcing used in the model simulations. Using the SeaWiFS-based monthly turbidity climatology gives a shallower MLD with much stronger stratification at the base and much better agreement with observations. Because of the high Black Sea turbidity, the simulation with all solar radiation absorbed at the surface case gives results similar to the simulations using turbidity from SeaWiFS in the annual means, the aspect of the results investigated in this paper.

Corresponding author address: Birol Kara, Naval Research Laboratory, Code 7320, Bldg. 1009, Stennis Space Center, MS 39529–5004. Email: kara@nrlssc.navy.mil

Abstract

A 1/25° × 1/25° cos(lat) (longitude × latitude) (≈3.2-km resolution) eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) is introduced for the Black Sea and used to examine the effects of ocean turbidity on upper-ocean circulation features including sea surface height and mixed layer depth (MLD) on annual mean climatological time scales. The model is a primitive equation model with a K-profile parameterization (KPP) mixed layer submodel. It uses a hybrid vertical coordinate that combines the advantages of isopycnal, σ, and z-level coordinates in optimally simulating coastal and open-ocean circulation features. This model approach is applied to the Black Sea for the first time. HYCOM uses a newly developed time-varying solar penetration scheme that treats attenuation as a continuous quantity. This scheme includes two bands of solar radiation penetration, one that is needed in the top 10 m of the water column and another that penetrates to greater depths depending on the turbidity. Thus, it is suitable for any ocean general circulation model that has fine vertical resolution near the surface. With this scheme, the optical depth–dependent attenuation of subsurface heating in HYCOM is given by monthly mean fields for the attenuation of photosynthetically active radiation (kPAR) during 1997–2001. These satellite-based climatological kPAR fields are derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) data for the spectral diffuse attenuation coefficient at 490 nm (k490) and have been processed to have the smoothly varying and continuous coverage necessary for use in the Black Sea model applications. HYCOM simulations are driven by two sets of high-frequency climatological forcing, but no assimilation of ocean data is then used to demonstrate the importance of including spatial and temporal varying attenuation depths for the annual mean prediction of upper-ocean quantities in the Black Sea, which is very turbid (kPAR > 0.15 m−1, in general). Results are reported from three model simulations driven by each atmospheric forcing set using different values for the kPAR. A constant solar-attenuation optical depth of ≈17 m (clear water assumption), as opposed to using spatially and temporally varying attenuation depths, changes the surface circulation, especially in the eastern Black Sea. Unrealistic sub–mixed layer heating in the former results in weaker stratification at the base of the mixed layer and a deeper MLD than observed. As a result, the deep MLD off Sinop (at around 42.5°N, 35.5°E) weakens the surface currents regardless of the atmospheric forcing used in the model simulations. Using the SeaWiFS-based monthly turbidity climatology gives a shallower MLD with much stronger stratification at the base and much better agreement with observations. Because of the high Black Sea turbidity, the simulation with all solar radiation absorbed at the surface case gives results similar to the simulations using turbidity from SeaWiFS in the annual means, the aspect of the results investigated in this paper.

Corresponding author address: Birol Kara, Naval Research Laboratory, Code 7320, Bldg. 1009, Stennis Space Center, MS 39529–5004. Email: kara@nrlssc.navy.mil

Save
  • Afanasyev, Y. D., A. G. Kostianoy, A. G. Zatsepin, and P-M. Poulain, 2002: Analysis of velocity field in the eastern Black Sea from satellite data during the Black Sea ‘99 experiment. J. Geophys. Res., 107 .3098, doi:10.1029/2000JC000578.

    • Search Google Scholar
    • Export Citation
  • Altman, E. N., and N. I. Kumish, 1986: Interannual and seasonal variability of the Black Sea fresh water balance (in Russian). Tr. Gos. Okeanogr. Inst., 145 , 315.

    • Search Google Scholar
    • Export Citation
  • Altman, E. N., I. F. Gertman, and Z. A. Golubeva, 1987: Climatological fields of salinity and temperature in the Black Sea (in Russian). State Oceanographic Institution Tech. Rep., 109 pp. [Available from 2 Kapitanskaya St., Sevastopol 99011, Ukraine.].

  • Austin, R. W., and T. J. Petzold, 1986: Spectral dependence of the diffuse attenuation coefficient of light in ocean waters. Opt. Eng., 25 , 471479.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-cartesian coordinates. Ocean Modell., 4 , 5588.

  • Bleck, R., and L. Smith, 1990: A wind-driven isopycnic coordinate model of the north and equatorial Atlantic Ocean. 1. Model development and supporting experiments. J. Geophys. Res., 95 , 32733285.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., L. T. Smith Jr., G. R. Halliwell Jr., and R. Bleck, 2003: North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr., 33 , 25042526.

    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephens, and J. I. Antonov, 2002: World Ocean Atlas 2001: Objective Analyses. Data Statistics, and Figures, CD-ROM Documentation. National Oceanographic Data Center, 17 pp.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Fox, D. N., W. J. Teague, C. N. Barron, M. R. Carnes, and C. M. Lee, 2002: The Modular Ocean Data Assimilation System (MODAS). J. Atmos. Oceanic Technol., 19 , 240252.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1999: ERA-15 description (version 2). ECMWF Re-Analysis Project Rep. Series 1, 74 pp. [Available from ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom.].

  • Gildor, H., A. H. Sobel, M. A. Cane, and R. N. Sambrotto, 2003: A role for ocean biota in tropical intraseasonal atmospheric variability. Geophys. Res. Lett., 30 .1460, doi:10.1029/2002GL016759.

    • Search Google Scholar
    • Export Citation
  • Halliwell Jr., G. R., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid Coordinate Ocean Model (HYCOM). Ocean Modell., 7 , 285322.

    • Search Google Scholar
    • Export Citation
  • Harding, J. M., M. R. Carnes, R. H. Preller, and R. Rhodes, 1999: The Naval Research Laboratory role in naval ocean prediction. Mar. Technol. Soc. J., 33 , 6779.

    • Search Google Scholar
    • Export Citation
  • Jerlov, N. G., 1976: Marine Optics. Elsevier Oceanography Series, Vol. 14, Elseiver, 231 pp.

  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105 , 1680316821.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2002: Air-sea flux estimates and the 1997–1998 ENSO event. Bound.-Layer Meteor., 103 , 439458.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, 2003: Climatological SST and MLD simulations from NLOM with an embedded mixed layer. J. Atmos. Oceanic Technol., 20 , 16161632.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., H. E. Hurlburt, P. A. Rochford, and J. J. O’Brien, 2004: The impact of water turbidity on the interannual sea surface temperature simulations in a layered global ocean model. J. Phys. Oceanogr., 34 , 345359.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, 2005a: How does solar attenuation depth affect the ocean mixed layer? Water turbidity and atmospheric forcing impacts on the simulation of seasonal mixed layer variability in the turbid Black Sea. J. Climate, 18 , 389409.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, 2005b: Sea surface temperature sensitivity to water turbidity from simulations of the turbid Black Sea using HYCOM. J. Phys. Oceanogr., 35 , 3354.

    • Search Google Scholar
    • Export Citation
  • Kideys, A. E., A. V. Kovalev, G. Shulman, A. Gordina, and F. Bingel, 2000: A review of zooplankton investigations of the Black Sea over the last decade. J. Mar. Syst., 24 , 355371.

    • Search Google Scholar
    • Export Citation
  • Konovalov, S. K., and J. W. Murray, 2001: Variations in the chemistry of the Black Sea on a time scale of decades (1960–1995). J. Mar. Syst., 31 , 217243.

    • Search Google Scholar
    • Export Citation
  • Kourafalou, V. H., and E. V. Stanev, 2001: Modeling the impact of atmospheric and terrestrial inputs on the Black Sea coastal dynamics. Ann. Geophys., 19 , 245256.

    • Search Google Scholar
    • Export Citation
  • Lalli, C. M., and T. R. Parsons, 1997: Biological Oceanography: An Introduction. Butterworth-Heinemann, 314 pp.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual mean climatology. J. Phys. Oceanogr., 27 , 24182447.

    • Search Google Scholar
    • Export Citation
  • Laws, E. A., G. R. DiTullio, K. L. Carder, P. R. Betzer, and S. Hawes, 1990: Primary production in the deep blue sea. Deep-Sea Res., 37 , 715730.

    • Search Google Scholar
    • Export Citation
  • Leveque, R. J., 2002: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 578 pp.

  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Lewis, M. R., M. E. Carr, G. Feldman, C. R. McClain, and W. Esaias, 1990: Influence of penetrating radiation on the heat budget of the equatorial Pacific Ocean. Nature, 347 , 543545.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., A. Zhang, and J. K. B. Bishop, 1994: Evaporation and solar irradiance as regulators of sea surface temperature in annual and interannual changes. J. Geophys. Res., 99 , 1262312637.

    • Search Google Scholar
    • Export Citation
  • McClain, C. R., M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, and N. Kuring, 1998: Science quality SeaWiFS data for global biosphere research. Sea Technol., 39 , 1016.

    • Search Google Scholar
    • Export Citation
  • Morel, A., and D. Antonie, 1994: Heating rate within the upper ocean in relation to its bio-optical state. J. Phys. Oceanogr., 24 , 16521665.

    • Search Google Scholar
    • Export Citation
  • Morel, A., and S. Maritorena, 2001: Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res., 106 , 71637180.

  • Murray, J. W., Z. Top, and E. Ozsoy, 1991: Hydrographic properties and ventilation of the Black Sea. Deep-Sea Res., 38 , 663690.

  • Murtugudde, R., J. Beauchamp, C. R. McClain, M. R. Lewis, and A. J. Busalacchi, 2002: Effects of penetrative radiation on the upper tropical ocean circulation. J. Climate, 15 , 470486.

    • Search Google Scholar
    • Export Citation
  • Nakamoto, S., P. Kumar, J. M. Oberhuber, J. Ishizaka, K. Muneyama, and R. Frouin, 2001: Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys. Res. Lett., 28 , 20212024.

    • Search Google Scholar
    • Export Citation
  • NAVOCEANO, 2003: Database description for the generalized digital environmental model (GDEM-V) Version 3.0. OAML-DBD-72, 34 pp. [Available from Naval Oceanographic Office, Oceanographic Data Bases Division, Stennis Space Center, MS 39522-5001.].

  • NOAA, 1988: Digital relief of the surface of the Earth. Data Announcement 88-MGG-02. [Available from NOAA National Geophysical Data Center, E/GC 325 Broadway, Boulder, CO 80305-3328.].

  • Oguz, T., and S. Besiktepe, 1999: Observations on the Rim Current structure, CIW formation and transport in the Western Black Sea. Deep-Sea Res., 46A , 17331753.

    • Search Google Scholar
    • Export Citation
  • Oguz, T., and Coauthors, 1993: Circulation in the surface and intermediate layers of the Black Sea. Deep-Sea Res., 40A , 15971612.

  • Oguz, T., P. Malanotte-Rizzoli, H. W. Ducklow, and J. W. Murray, 2002: Interdisciplinary studies integrating the Black Sea biogeochemistry and circulation dynamics. Oceanography, 15 , 411.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., 2003: Ocean radiant heating in climate models. J. Climate, 16 , 13371351.

  • Ohlmann, J. C., D. Siegel, and L. Washburn, 1998: Radiant heating of the western equatorial Pacific during TOGA-COARE. J. Geophys. Res., 103 , 53795395.

    • Search Google Scholar
    • Export Citation
  • Ozsoy, E., and U. Unluata, 1997: Oceanography of the Black Sea: A review of some recent results. Earth-Sci. Rev., 42 , 231272.

  • Ozsoy, E., U. Unluata, and Z. Top, 1993: The evaluation of Mediterranean water in the Black Sea: Interior mixing and material transport by double diffusive intrusions. Progress in Oceanography, Vol. 31, Pergamon, 275–320.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7 , 953956.

  • Perry, G. D., P. B. Duffy, and N. L. Miller, 1996: An extended data set of river discharges for validation of general circulation models. J. Geophys. Res., 101 , 2133921349.

    • Search Google Scholar
    • Export Citation
  • Rochford, P. A., A. B. Kara, A. J. Wallcraft, and R. A. Arnone, 2001: Importance of solar subsurface heating in ocean general circulation models. J. Geophys. Res., 106 , 3092330938.

    • Search Google Scholar
    • Export Citation
  • Rosmond, T. E., J. Teixeira, M. Peng, T. F. Hogan, and R. Pauley, 2002: Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models. Oceanography, 15 , 99108.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and Z. Zhu, 1998: Sensitivity of the simulated annual cycle of sea surface temperature in the equatorial Pacific to sunlight penetration. J. Climate, 11 , 19331950.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., T. Barnett, M. Latif, and T. Stockdale, 1996: Warm pool physics in a coupled GCM. J. Climate, 9 , 219239.

  • Schneider, N., A. J. Miller, and D. W. Pierce, 2002: Anatomy of North Pacific decadal variability. J. Climate, 15 , 586605.

  • Siegel, D. A., J. C. Ohlmann, L. Washburn, R. Bidigare, C. Nosse, E. Fields, and Y. Zhou, 1995: Solar radiation, phytoplankton pigments and radiant heating of the equatorial Pacific. J. Geophys. Res., 100 , 48854891.

    • Search Google Scholar
    • Export Citation
  • Simonot, J-Y., and H. Le Treut, 1986: A climatological field of mean optical properties of the world ocean. J. Geophys. Res., 91 , 66426646.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J. S., 1963: General circulation experiments with the primitive equations. I: The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., E. D. Skyllingstad, G. Crawford, and H. Wijesekera, 2002: Nonlocal fluxes and Stokes drift effects in the K-Profile Parameterization. Ocean Dyn., 52 , 104115.

    • Search Google Scholar
    • Export Citation
  • Sorkina, A. I., 1974: Reference Book on the Black Sea Climate. (in Russian). Gidrometeoizdat, 406 pp.

  • Stanev, E. V., 1990: On the mechanisms of the Black Sea circulation. Earth-Sci. Rev., 28 , 285319.

  • Stanev, E. V., and J. M. Beckers, 1999: Barotropic and baroclinic oscillations in strongly stratified ocean basins: Numerical study of the Black Sea. J. Mar. Syst., 19 , 65112.

    • Search Google Scholar
    • Export Citation
  • Stanev, E. V., and J. V. Staneva, 2000: The impact of the baroclinic eddies and basin oscillations on the transitions between different quasi-stable states of the Black Sea circulation. J. Mar. Syst., 24 , 326.

    • Search Google Scholar
    • Export Citation
  • Stanev, E. V., and J. V. Staneva, 2001: The sensitivity of the heat exchange at sea surface to meso and sub-basin scale eddies: Model study for the Black Sea. Dyn. Atmos. Oceans, 33 , 163189.

    • Search Google Scholar
    • Export Citation
  • Staneva, J. V., and E. V. Stanev, 1998: Oceanic response to atmospheric forcing derived from different climate data sets. Oceanol. Acta, 21 , 393417.

    • Search Google Scholar
    • Export Citation
  • Staneva, J. V., D. E. Dietrich, E. V. Stanev, and M. J. Bowman, 2001: Rim Current and coastal eddy mechanisms in an eddy-resolving Black Sea general circulation model. J. Mar. Syst., 31 , 137157.

    • Search Google Scholar
    • Export Citation
  • Sur, H. I., and Y. P. Ilyin, 1997: Evolution of satellite derived mesoscale thermal patterns in the Black Sea. Progress in Oceanography, Vol. 39, Pergamon, 109–151.

    • Search Google Scholar
    • Export Citation
  • Sur, H. I., E. Ozsoy, Y. P. Ilyin, and U. Unluata, 1996: Coastal/deep ocean interactions in the Black Sea and their ecological/environmental impacts. J. Mar. Syst., 7 , 293320.

    • Search Google Scholar
    • Export Citation
  • van Leer, B., 1977: Towards the ultimate conservative difference scheme IV. A new approach to numerical convection. J. Comput. Phys., 23 , 276299.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., K. Sharma, B. M. Fekete, A. H. Copeland, J. Holden, J. Marble, and J. A. Lough, 1997: The storage and aging of continental runoff in large reservoir systems of the world. Ambio, 26 , 210219.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., B. M. Fekete, and B. A. Tucker, 1998: River, Discharge Database, (RivDIS) V1.1. Version 1.1.[Available from the Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 39 College Rd., Durham, NH 03824.].

  • Wallcraft, A. J., A. B. Kara, H. E. Hurlburt, and P. A. Rochford, 2003: The NRL Layered Global Ocean Model (NLOM) with an embedded mixed layer submodel: Formulation and tuning. J. Atmos. Oceanic Technol., 20 , 16011615.

    • Search Google Scholar
    • Export Citation
  • Zaneveld, J. R. V., J. C. Kitchen, and J. L. Müeller, 1993: Vertical structure of productivity and its vertical integration as derived from remotely sensed observations. Limnol. Oceanogr., 38 , 13841393.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1374 739 58
PDF Downloads 569 111 10