Variability of the Kuroshio Extension Jet, Recirculation Gyre, and Mesoscale Eddies on Decadal Time Scales

Bo Qiu Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Bo Qiu in
Current site
Google Scholar
PubMed
Close
and
Shuiming Chen Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Shuiming Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Twelve years of sea surface height (SSH) data from multiple satellite altimeters are used to investigate the low-frequency changes and the interconnections of the Kuroshio Extension (KE) jet, its southern recirculation gyre, and their mesoscale eddy field. The dominant signal is characterized by the steady weakening of the KE jet/recirculation gyre from 1993 to 1996, followed by a gradual strengthening after 1997. During the weakening period of 1993–96, the KE path migrated southward in general, and this path migration reversed in direction during the strengthening period of the KE jet and recirculation gyre after 1997. By hindcasting the SSH signals using linear vorticity dynamics, it was found that weakening (strengthening) in the KE jet and recirculation gyre is consistent with westward propagation of negative (positive) SSH anomalies generating in the eastern North Pacific and strengthening during their westward propagation. When the KE jet and recirculation gyre were in a weak mode during 1996–2001, the regional eddy kinetic energy level was observed to be higher than when the jet and recirculation gyre were in a strong mode. This negative correlation between the mean flow intensity and the level of regional eddy kinetic energy is found in both the SSH data and the linear vorticity model to result from the migration of the KE jet inflow over the Izu–Ogasawara Ridge. When it is forced southward by the impinging negative SSH anomalies, the KE jet inflow rides over the ridge through a shallow segment, leading to large-amplitude downstream meanders. Impinging of positive SSH anomalies, on the other hand, strengthens the recirculation gyre and forces the inflow northward where it passes through a deep channel, minimizing the path perturbations in the downstream region.

Corresponding author address: Dr. Bo Qiu, Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI 96822. Email: bo@soest.hawaii.edu

Abstract

Twelve years of sea surface height (SSH) data from multiple satellite altimeters are used to investigate the low-frequency changes and the interconnections of the Kuroshio Extension (KE) jet, its southern recirculation gyre, and their mesoscale eddy field. The dominant signal is characterized by the steady weakening of the KE jet/recirculation gyre from 1993 to 1996, followed by a gradual strengthening after 1997. During the weakening period of 1993–96, the KE path migrated southward in general, and this path migration reversed in direction during the strengthening period of the KE jet and recirculation gyre after 1997. By hindcasting the SSH signals using linear vorticity dynamics, it was found that weakening (strengthening) in the KE jet and recirculation gyre is consistent with westward propagation of negative (positive) SSH anomalies generating in the eastern North Pacific and strengthening during their westward propagation. When the KE jet and recirculation gyre were in a weak mode during 1996–2001, the regional eddy kinetic energy level was observed to be higher than when the jet and recirculation gyre were in a strong mode. This negative correlation between the mean flow intensity and the level of regional eddy kinetic energy is found in both the SSH data and the linear vorticity model to result from the migration of the KE jet inflow over the Izu–Ogasawara Ridge. When it is forced southward by the impinging negative SSH anomalies, the KE jet inflow rides over the ridge through a shallow segment, leading to large-amplitude downstream meanders. Impinging of positive SSH anomalies, on the other hand, strengthens the recirculation gyre and forces the inflow northward where it passes through a deep channel, minimizing the path perturbations in the downstream region.

Corresponding author address: Dr. Bo Qiu, Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI 96822. Email: bo@soest.hawaii.edu

Save
  • Adamec, D., 2000: Eddy flow characteristics and mean flow interactions in the North Pacific. J. Geophys. Res., 105 , 1137311383.

  • Aoki, S., S. Imawaki, and K. Ichikawa, 1995: Baroclinic disturbances propagating westward in the Kuroshio Extension region as seen by a satellite altimeter and radiometers. J. Geophys. Res., 100 , 839855.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Climate, 12 , 16971706.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., and P-Y. Le Traon, 2001: A comparison of surface eddy kinetic energy and Reynolds stresses in the Gulf Stream and the Kuroshio Current system from merged TOPEX/Poseidon and ERS-1/2 altimetric data. J. Geophys. Res., 106 , 1660316662.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P-Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105 , 1947719498.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., and K. Hanawa, 2001: Trajectory of mesoscale eddies in the Kuroshio recirculation region. J. Oceanogr., 57 , 471480.

  • Gilson, J., D. Roemmich, B. Cornuelle, and L-L. Fu, 1998: Relationship of TOPEX/Poseidon altimetric height to steric height and circulation in the North Pacific. J. Geophys. Res., 103 , 2794727965.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., A. J. Wallcraft, W. J. Schmitz, P. J. Hogan, and E. J. Metzger, 1996: Dynamics of the Kuroshio/Oyashio current system using eddy-resolving models of the North Pacific Ocean. J. Geophys. Res., 101 , 941976.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., 1987: Hydrograhic sections across the Kuroshio extension at 165°E and 175°E. Deep-Sea Res., 34 , 13311352.

  • Joyce, T. M., I. Yasuda, Y. Hiroe, K. Komatsu, K. Kawasaki, and F. Bahr, 2001: Mixing in the meandering Kuroshio Extension and the formation of North Pacific Intermediate Water. J. Geophys. Res., 106 , 43974404.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kawabe, M., 1995: Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J. Phys. Oceanogr., 25 , 31033117.

    • Search Google Scholar
    • Export Citation
  • Kawamura, H., K. Mizuno, and Y. Toba, 1986: Formation process of a warm-core ring in the Kuroshio-Oyashio frontal zone-December 1981–October 1982. Deep-Sea Res., 33 , 16171640.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P-Y., and G. Dibarboure, 1999: Mesoscale mapping capabilities of multiple-satellite altimeter missions. J. Atmos. Oceanic Technol., 16 , 12081223.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., D. R. Cayan, and W. B. White, 1998: A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. J. Climate, 11 , 31123127.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. L., W. J. Teague, G. A. Jacobs, H. E. Hurlburt, and P. J. Hogan, 1996: Kuroshio Extension dynamics from satellite altimetry and a model simulation. J. Geophys. Res., 101 , 10451058.

    • Search Google Scholar
    • Export Citation
  • Mitsudera, H., T. Waseda, Y. Yoshikawa, and B. Taguchi, 2001: Anticyclonic eddies and Kuroshio meander formation. Geophys. Res. Lett., 28 , 20252028.

    • Search Google Scholar
    • Export Citation
  • Mizuno, K., and W. B. White, 1983: Annual and interannual variability in the Kuroshio Current system. J. Phys. Oceanogr., 13 , 18471867.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., N. A. Maximenko, G. G. Panteleev, T. Yamagat, and D. B. Olson, 2003: Near-surface dynamical structure of the Kuroshio Extension. J. Geophys. Res., 108 .3193, doi:10.1029/2002JC001461.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and S-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. J. Climate, 16 , 14041413.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1996: Ocean Circulation Theory. Springer, 453 pp.

  • Qiu, B., 1995: Variability and energetics of the Kuroshio Extension and its recirculation gyre from the first two-year TOPEX data. J. Phys. Oceanogr., 25 , 18271842.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33 , 24652482.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and K. A. Kelly, 1993: Upper-ocean heat balance in the Kuroshio Extension region. J. Phys. Oceanogr., 23 , 20272041.

  • Qiu, B., and W. Miao, 2000: Kuroshio path variations south of Japan: Bimodality as a self-sustained internal oscillation. J. Phys. Oceanogr., 30 , 21242137.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and P. Hacker, 2004: Synoptic-scale air–sea flux forcing in the western North Pacific: Observations and its impact on SST and the mixed layer. J. Phys. Oceanogr., 34 , 21482159.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., A. J. Miller, and D. W. Pierce, 2002: Anatomy of North Pacific decadal variability. J. Climate, 15 , 586605.

  • Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio–Oyashio extension and generation of SST anomalies on decadal timescales. J. Climate, 14 , 42494265.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1994: Bathymetric prediction from dense altimetry and sparse shipboard bathymetry. J. Geophys. Res., 99 , 2180321824.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Steric and wind-induced changes in TOPEX/POSEIDON large-scale sea surface topography observations. J. Geophys. Res., 102 , 2098721009.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., S-P. Xie, H. Mitsudera, and A. Kubokawa, 2005: Response of the Kuroshio Extension to Rossby waves associated with the 1970s climate regime shift in a high-resolution ocean model. J. Climate, 18 , 29792995.

    • Search Google Scholar
    • Export Citation
  • Tai, C-T., and W. B. White, 1990: Eddy variability in the Kuroshio Extension as revealed by Geosat altimetry: Energy propagation away from the jet, Reynolds stress, and seasonal cycle. J. Phys. Oceanogr., 20 , 17611777.

    • Search Google Scholar
    • Export Citation
  • Talley, L., 1997: North Pacific Intermediate Water transports in the mixed water region. J. Phys. Oceanogr., 27 , 17951803.

  • Teague, W. J., M. J. Carron, and P. J. Hogan, 1990: A comparison between the Generalized Digital Environmental Model and Levitus climatologies. J. Geophys. Res., 95 , 71677183.

    • Search Google Scholar
    • Export Citation
  • Toba, Y., and H. Murakami, 1998: Unusual behavior of the Kuroshio current system from winter 1996 to summer 1997 revealed by ADEOS-OCTS and other data—Suggestion of topographically forced alternating-jet instability. J. Oceanogr., 54 , 465478.

    • Search Google Scholar
    • Export Citation
  • Vivier, F., K. A. Kelly, and L. Thompson, 2002: Heat budget in the Kuroshio Extension region: 1993–99. J. Phys. Oceanogr., 32 , 34363454.

    • Search Google Scholar
    • Export Citation
  • Wang, L., C. J. Koblinsky, and S. Howden, 1998: Annual and intra-annual sea level variability in the region of the Kuroshio Extension from TOPEX/Poseidon and Geosat altimetry. J. Phys. Oceanogr., 28 , 692711.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., M. M. Hall, T. M. Joyce, D. J. Torres, P. Hacker, and E. Firing, 1998: Multiple deep gyres of the western North Pacific: A WOCE section along 149°E. J. Geophys. Res., 103 , 1298513009.

    • Search Google Scholar
    • Export Citation
  • Yasuda, I., K. Okuda, and M. Hirai, 1992: Evolution of a Kuroshio warm-core ring—Variability of the hydrographic structure. Deep-Sea Res., 39 , 131161.

    • Search Google Scholar
    • Export Citation
  • Yasuda, I., K. Okuda, and Y. Shimizu, 1996: Distribution and modification of North Pacific Intermediate Water in the Kuroshio–Oyashio interfrontal zone. J. Phys. Oceanogr., 26 , 448465.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2847 904 75
PDF Downloads 2117 671 51