Bispectral Analysis of Energy Transfer within the Two-Dimensional Oceanic Internal Wave Field

Naoki Furuichi Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Naoki Furuichi in
Current site
Google Scholar
PubMed
Close
,
Toshiyuki Hibiya Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Toshiyuki Hibiya in
Current site
Google Scholar
PubMed
Close
, and
Yoshihiro Niwa Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Yoshihiro Niwa in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Bispectral analysis of the numerically reproduced spectral responses of the two-dimensional oceanic internal wave field to the incidence of the low-mode semidiurnal internal tide is performed. At latitudes just equatorward of 30°, the low-mode semidiurnal internal tide dominantly interacts with two high-vertical-wavenumber diurnal (near inertial) internal waves, forming resonant triads of parametric subharmonic instability (PSI) type. As the high-vertical-wavenumber near-inertial energy level is raised by this interaction, the energy cascade to small horizontal and vertical scales is enhanced. Bispectral analysis thus indicates that energy in the low-mode semidiurnal internal tide is not directly transferred to small scales but via the development of high-vertical-wavenumber near-inertial current shear. In contrast, no noticeable energy cascade to high vertical wavenumbers is recognized in the bispectra poleward of ∼30° as well as equatorward of ∼25°. A new finding is that, although PSI is possible equatorward of ∼30°, the efficiency drops sharply as the latitude falls below ∼25°. At all latitudes, another resonant interaction suggestive of induced diffusion is found to occur between the low-mode semidiurnal internal tide and two high-frequency internal waves, although bispectral analysis shows that this interaction plays only a minor role in cascading the low-mode semidiurnal internal tide energy.

Corresponding author address: Naoki Furuichi, Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan. Email: furu1@eps.s.u-tokyo.ac.jp

Abstract

Bispectral analysis of the numerically reproduced spectral responses of the two-dimensional oceanic internal wave field to the incidence of the low-mode semidiurnal internal tide is performed. At latitudes just equatorward of 30°, the low-mode semidiurnal internal tide dominantly interacts with two high-vertical-wavenumber diurnal (near inertial) internal waves, forming resonant triads of parametric subharmonic instability (PSI) type. As the high-vertical-wavenumber near-inertial energy level is raised by this interaction, the energy cascade to small horizontal and vertical scales is enhanced. Bispectral analysis thus indicates that energy in the low-mode semidiurnal internal tide is not directly transferred to small scales but via the development of high-vertical-wavenumber near-inertial current shear. In contrast, no noticeable energy cascade to high vertical wavenumbers is recognized in the bispectra poleward of ∼30° as well as equatorward of ∼25°. A new finding is that, although PSI is possible equatorward of ∼30°, the efficiency drops sharply as the latitude falls below ∼25°. At all latitudes, another resonant interaction suggestive of induced diffusion is found to occur between the low-mode semidiurnal internal tide and two high-frequency internal waves, although bispectral analysis shows that this interaction plays only a minor role in cascading the low-mode semidiurnal internal tide energy.

Corresponding author address: Naoki Furuichi, Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan. Email: furu1@eps.s.u-tokyo.ac.jp

Save
  • Bell Jr., T. H., 1975: Topographically generated internal waves in open ocean. J. Geophys. Res., 80 , 320327.

  • Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17 , 970985.

  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15 , 10431059.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1995: Upper-ocean inertial currents forced by a strong storm. Part II: Modeling. J. Phys. Oceanogr., 25 , 29372952.

  • D’Asaro, E. A., C. C. Eriksen, M. D. Levine, P. P. Niiler, C. A. Paulson, and P. Van Meurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25 , 29092936.

    • Search Google Scholar
    • Export Citation
  • Furue, R., 1998: Importance of local interactions within the small-scale oceanic internal wave spectrum for transferring energy to dissipation scales: A three dimensional numerical study. Ph.D. thesis, University of Tokyo, 112 pp.

  • Furue, R., 2003: Energy transfer within the small-scale oceanic internal wave spectrum. J. Phys. Oceanogr., 33 , 267282.

  • Garrett, C. J. R., and W. H. Munk, 1972: Space–time scales of internal waves. Geophys. Fluid Dyn., 2 , 225264.

  • Garrett, C. J. R., and W. H. Munk, 1975: Space–time scales of internal waves: A progress report. J. Geophys. Res., 80 , 291297.

  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14 , 11291151.

  • Greatbatch, R. J., 1984: On the response of the ocean to a moving storm: Parameters and scales. J. Phys. Oceanogr., 14 , 5977.

  • Hibiya, T., 1986: Generation mechanism of internal waves by tidal flow over a sill. J. Geophys. Res., 91 , 76977708.

  • Hibiya, T., 1988: The generation of internal waves by tidal flow over Stellwagen Bank. J. Geophys. Res., 93 , 533542.

  • Hibiya, T., 1990: Generation mechanism of internal waves by a vertically sheared tidal flow over a sill. J. Geophys. Res., 95 , 17571764.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., and M. Nagasawa, 2004: Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett., 31 .L01301, doi:10.1029/2003GL017998.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., Y. Niwa, K. Nakajima, and N. Suginohara, 1996: Direct numerical simulation of the roll-off range of internal wave shear spectra in the ocean. J. Geophys. Res., 101 , 1412314129.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., Y. Niwa, and K. Fujiwara, 1998: Numerical experiments of nonlinear energy transfer within the oceanic internal wave spectrum. J. Geophys. Res., 103 , 1871518722.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., M. Nagasawa, and Y. Niwa, 2002: Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res., 107 .3207, doi:10.1029/2001JC001210.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., 1993: On internal waves generated by traveling wind. J. Fluid Mech., 254 , 529559.

  • Lin, C-L., J. R. Koseff, and J. H. Ferziger, 1995: On triad interactions in a linearly stratified ocean. J. Phys. Oceanogr., 25 , 153167.

    • Search Google Scholar
    • Export Citation
  • Matsuura, T., and T. Hibiya, 1990: An experimental and numerical study of the internal wave generation by tide-topography interaction. J. Phys. Oceanogr., 20 , 506521.

    • Search Google Scholar
    • Export Citation
  • McComas, C. H., 1977: Equilibrium mechanisms within oceanic internal wave field. J. Phys. Oceanogr., 7 , 836845.

  • McComas, C. H., and F. P. Bretherton, 1977: Resonant interaction of oceanic internal waves. J. Geophys. Res., 82 , 13971412.

  • McComas, C. H., and M. G. Briscoe, 1980: Bispectra of internal waves. J. Fluid Mech., 97 , 205213.

  • McComas, C. H., and P. Müller, 1981: The dynamic balance of internal waves. J. Phys. Oceanogr., 11 , 970986.

  • Merrifield, M. A., and P. E. Holloway, 2002: Model estimates of M2 internal tide energetics at the Hawaiian ridge. J. Geophys. Res., 107 .3179, doi:10.1029/2001JC000996.

    • Search Google Scholar
    • Export Citation
  • Morozov, E. G., 1995: Semidiurnal internal wave global field. Deep-Sea Res., 42A , 135148.

  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., The MIT Press, 264–291.

    • Search Google Scholar
    • Export Citation
  • Nagasawa, M., Y. Niwa, and T. Hibiya, 2000: Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res., 105 , 1393313943.

    • Search Google Scholar
    • Export Citation
  • Nagasawa, M., T. Hibiya, Y. Niwa, M. Watanabe, Y. Isoda, S. Takagi, and Y. Kamei, 2002: Distribution of fine-scale shear in the deep waters of the North Pacific obtained using expendable current profilers. J. Geophys. Res., 107 .3221, doi:10.1029/2002JC001376.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., 1995: Energy flux from traveling hurricanes to the oceanic internal wave field. J. Phys. Oceanogr., 25 , 558573.

  • Niwa, Y., and T. Hibiya, 1997: Nonlinear processes of energy transfer from traveling hurricanes to the deep ocean internal wave field. J. Geophys. Res., 102 , 1246912477.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 1999: Response of the deep ocean internal wave field to traveling midlatitude storms as observed in long term current measurements. J. Geophys. Res., 104 , 1098110989.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2001: Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J. Geophys. Res., 106 , 2244122449.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109 .C04027, doi:10.1029/2003JC001923.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. Cambridge University Press, 336 pp.

  • Ray, R. D., and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from Topex/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28 , 12591262.

    • Search Google Scholar
    • Export Citation
  • Shen, C. Y., and G. Holloway, 1986: A numerical study of the frequency and the energetics of nonlinear internal gravity waves. J. Geophys. Res., 91 , 953973.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32 , 28822899.

  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29 .1239, doi:10.1029/2001GL014422.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2005: Estimates of energy dissipation rates in the three-dimensional deep ocean internal wave field. J. Oceanogr., 61 , 123127.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and E. A. D’Asaro, 1997: Direct simulation of internal wave energy transfer. J. Phys. Oceanogr., 27 , 19371945.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 263 60 4
PDF Downloads 177 45 1