• Alvarez, M., , H. L. Bryden, , F. F. Perez, , A. F. Rios, , and G. Roson, 2002: Physical and biogeochemical fluxes and net budgets in the subpolar and temperate North Atlantic. J. Mar. Res., 60 , 191226.

    • Search Google Scholar
    • Export Citation
  • Bacon, S., 1997: Circulation and fluxes in the North Atlantic between Greenland and Ireland. J. Phys. Oceanogr., 27 , 14201435.

  • Bacon, S., , G. Reverdin, , I. G. Rigor, , and H. M. Snaith, 2002: A freshwater jet on the east Greenland shelf. J. Geophys. Res., 107 .3068, doi:10.1029/2001JC000935.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., , L. Siefridt, , and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6 , 363380.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., , and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27 , 581591.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., , R. H. Kase, , and D. B. Stammer, 2003: The sensitivity of the Greenland–Scotland ridge overflow to forcing changes. J. Phys. Oceanogr., 33 , 23072319.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., , F. O. Bryan, , W. R. Holland, , and R. Döscher, 1996: Deep-water formation and meridional overturning in a high-resolution model of the North Atlantic. J. Phys. Oceanogr., 26 , 11411164.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., and Coauthors, 2002: Directly measured mid-depth circulation in the northeastern North Atlantic Ocean. Nature, 419 , 603607.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., , C. W. Böning, , and W. R. Holland, 1995: On the midlatitude circulation in a high-resolution model of the North Atlantic. J. Phys. Oceanogr., 25 , 289305.

    • Search Google Scholar
    • Export Citation
  • Chanut, J., 2003: Paramétrisation de la restratification après convection profonde en mer du Labrador. Ph.D. thesis, Université Joseph Fourier, 160 pp.

  • Chassignet, E. P., , and Z. D. Garraffo, 2001: Viscosity parameterization and the Gulf Stream separation. From Stirring to Mixing in a Stratified Ocean: Proc. ’Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 37–41.

  • Clarke, R. A., 1984: Transport through the Cape Farewell-Flemish Cap section. Rapp. P. V. Reun. Cons. Int. Explor. Mer., 185 , 120130.

    • Search Google Scholar
    • Export Citation
  • Dengg, J., , C. Böning, , U. Ernst, , R. Redler, , and A. Beckmann, 1999: Effects of improved model representation of overflow water on the subpolar North Atlantic. International WOCE Newsletter, No. 37, WOCE International Project Office, Southampton, United Kingdom, 10–15.

  • Dickson, R. R., , and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates and pathways. J. Geophys. Res., 99 , 1231912341.

    • Search Google Scholar
    • Export Citation
  • Eden, C., , and J. Willebrand, 2001: Mechanisms of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14 , 22662280.

    • Search Google Scholar
    • Export Citation
  • Eden, C., , and C. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32 , 33463363.

  • Flatau, M. K., , L. D. Talley, , and P. P. Niiler, 2003: The North Atlantic Oscillation, surface current velocities, and SST changes in the subpolar North Atlantic. J. Climate, 16 , 23552369.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., , and P. B. Rhines, 2004: Decline of the subpolar North Atlantic circulation during the 1990s. Science, 204 , 555559.

  • Käse, R. H., , A. Biastoch, , and D. B. Stammer, 2001: On the mid-depth circulation in the Labrador and Irminger Seas. Geophys. Res. Lett., 28 , 34333436.

    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., , R. E. Davis, , and W. B. Owens, 2000: Mid-depth circulation observed in the interior Labrador and Irminger Seas by direct velocity measurements. Nature, 407 , 6668.

    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., , R. E. Davis, , and W. B. Owens, 2002: Observations of open-ocean deep convection in the Labrador Sea from subsurface floats. J. Phys. Oceanogr., 32 , 511526.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Madec, G., , P. Delecluse, , M. Imbard, , and C. Levy, 1998: OPA 8.1 general circulation model reference manual. Notes de l’IPSL, Université P. et M. Curie, No. 11, 91 pp.

  • Myers, P. G., 2002: SPOM: A regional model of the subpolar North Atlantic. Atmos.–Ocean, 40 , 445463.

  • Myers, P. G., , and D. Deacu, 2004: Labrador Sea freshwater content in a model with partial cell topographic representation. Ocean Modell., 6 , 359377.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1996: MOM 2 documentation: User’s guide and reference manual. GFDL Ocean Tech. Rep. 3.1, 329 pp. [Available from Geophysical Fluid Dynamics Laboratory, NOAA, Princeton NJ 08540].

  • Pacanowski, R. C., , and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Paiva, A. M., , and E. P. Chassignet, 2001: The impact of surface flux parameterizations on the modeling of the North Atlantic Ocean. J. Phys. Oceanogr., 31 , 18601879.

    • Search Google Scholar
    • Export Citation
  • Paiva, A. M., , J. T. Hargrove, , E. P. Chassignet, , and R. Bleck, 1999: Turbulent behavior of a fine mesh (1/12°) numerical simulation of the North Atlantic. J. Mar. Syst., 21 , 307320.

    • Search Google Scholar
    • Export Citation
  • Papadakis, M. P., , E. P. Chassignet, , and R. W. Hallberg, 2003: Numerical simulations of the Mediterranean Sea outflow: Impact of the entrainment parameterization in an isopycnic coordinate ocean model. Ocean Modell., 5 , 325356.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., , D. J. Torres, , and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32 , 428457.

    • Search Google Scholar
    • Export Citation
  • Redler, R., , and C. W. Böning, 1997: Effect of the overflows on the circulation in the subpolar North Atlantic: A regional model study. J. Geophys. Res., 102 , 1852918552.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., , P. P. Niiler, , and H. Valdimarsson, 2003: North Atlantic Ocean surface currents. J. Geophys. Res., 108 .3002, doi:10.1029/2001JC001020.

    • Search Google Scholar
    • Export Citation
  • Reynaud, T., , A. Waever, , and R. Greatbach, 1995: Summer mean circulation of the northwestern Atlantic Ocean. J. Geophys. Res., 100 , 779816.

    • Search Google Scholar
    • Export Citation
  • Reynaud, T., , P. Legrand, , H. Mercier, , and B. Barnier, 1998: A new analysis of hydrographic data in the Atlantic and its application to an inverse modeling study. International WOCE Newsletter, No. 32, WOCE International Project Office, Southampton, United Kingdom, 29–31.

  • Roberts, M. J., , R. Marsh, , A. L. New, , and R. A. Wood, 1996: An intercomparison of a Bryan–Cox-type ocean model and an isopycnic ocean model. Part I: The subpolar gyre and high-latitude processes. J. Phys. Oceanogr., 26 , 14951527.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., , and M. S. McCartney, 1993: On the North Atlantic circulation. Rev. Geophys., 31 , 2949.

  • Smith, R. D., , J. K. Dukowicz, , and R. C. Malone, 1992: Parallel ocean general circulation modelling. Physica D, 60 , 3861.

  • Smith, R. D., , M. E. Maltrud, , F. O. Bryan, , and M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr., 30 , 15321561.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., , and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277 , 19561962.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., , and R. S. Pickart, 2003: Wind-driven recirculations and exchange in the Labrador and Irminger Seas. J. Phys. Oceanogr., 33 , 18291845.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., and Coauthors, 2001: An eddy permitting model of the Atlantic circulation: Evaluating open boundary conditions. J. Geophys. Res., 106 , 2211522129.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., , N. G. Hogg, , M. Maltrud, , K. Speer, , and V. Thierry, 2003: The origin of deep zonal flows in the Brazil Basin. J. Phys. Oceanogr., 33 , 580599.

    • Search Google Scholar
    • Export Citation
  • Willebrand, J., and Coauthors, 2001: Circulation characteristics in three eddy-permitting models of the North Atlantic. Progress in Oceanography, Vol. 48, Pergamon, 123–161.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 344 344 13
PDF Downloads 216 216 8

The North Atlantic Subpolar Gyre in Four High-Resolution Models

View More View Less
  • * Laboratoire de Physique des Oceans, CNRS–IFREMER–UBO, Brest, France
  • | + RSMAS/MPO, University of Miami, Miami, Florida
  • | # Laboratoire des Ecoulements Geophysiques et Industriels, Joseph Fourier University, Grenoble, France
  • | @ Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 5 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | * *NEC High Performance Computing Europe GmbH, Düsseldorf, Germany
  • | ++ Institüt für Meereskunde, Kiel, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The authors present the first quantitative comparison between new velocity datasets and high-resolution models in the North Atlantic subpolar gyre [1/10° Parallel Ocean Program model (POPNA10), Miami Isopycnic Coordinate Ocean Model (MICOM), ⅙° Atlantic model (ATL6), and Family of Linked Atlantic Ocean Model Experiments (FLAME)]. At the surface, the model velocities agree generally well with World Ocean Circulation Experiment (WOCE) drifter data. Two noticeable exceptions are the weakness of the East Greenland coastal current in models and the presence in the surface layers of a strong southwestward East Reykjanes Ridge Current. At depths, the most prominent feature of the circulation is the boundary current following the continental slope. In this narrow flow, it is found that gridded float datasets cannot be used for a quantitative comparison with models. The models have very different patterns of deep convection, and it is suggested that this could be related to the differences in their barotropic transport at Cape Farewell. Models show a large drift in watermass properties with a salinization of the Labrador Sea Water. The authors believe that the main cause is related to horizontal transports of salt because models with different forcing and vertical mixing share the same salinization problem. A remarkable feature of the model solutions is the large westward transport over Reykjanes Ridge [10 Sv (Sv ≡ 106 m3 s−1) or more].

Corresponding author address: Dr. Anne-Marie Treguier, Laboratoire Physique des Oceans, CNRS–IFREMER–UBO, BP 70, Plouzane, France. Email: treguier@ifremer.fr

Abstract

The authors present the first quantitative comparison between new velocity datasets and high-resolution models in the North Atlantic subpolar gyre [1/10° Parallel Ocean Program model (POPNA10), Miami Isopycnic Coordinate Ocean Model (MICOM), ⅙° Atlantic model (ATL6), and Family of Linked Atlantic Ocean Model Experiments (FLAME)]. At the surface, the model velocities agree generally well with World Ocean Circulation Experiment (WOCE) drifter data. Two noticeable exceptions are the weakness of the East Greenland coastal current in models and the presence in the surface layers of a strong southwestward East Reykjanes Ridge Current. At depths, the most prominent feature of the circulation is the boundary current following the continental slope. In this narrow flow, it is found that gridded float datasets cannot be used for a quantitative comparison with models. The models have very different patterns of deep convection, and it is suggested that this could be related to the differences in their barotropic transport at Cape Farewell. Models show a large drift in watermass properties with a salinization of the Labrador Sea Water. The authors believe that the main cause is related to horizontal transports of salt because models with different forcing and vertical mixing share the same salinization problem. A remarkable feature of the model solutions is the large westward transport over Reykjanes Ridge [10 Sv (Sv ≡ 106 m3 s−1) or more].

Corresponding author address: Dr. Anne-Marie Treguier, Laboratoire Physique des Oceans, CNRS–IFREMER–UBO, BP 70, Plouzane, France. Email: treguier@ifremer.fr

Save