• Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17 , 970985.

  • Flato, G. M., , G. J. Boer, , W. G. Lee, , N. A. McFarlane, , D. Ramsden, , M. C. Reader, , and A. J. Weaver, 2000: The Canadian Centre for Climate Modeling and Analysis global coupled model and its climate. Climate Dyn., 16 , 451467.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., , and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453456.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean general circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283 , 20772079.

  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92 , C5,. 52495286.

  • Griffies, S. M., , R. C. Pacanowski, , and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128 , 538564.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., , and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28 , 811814.

  • Large, W., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and model with nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , A. J. Watson, , and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364 , 701703.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Thermobaricity, cabbeling, and water-mass conversion. J. Geophys. Res., 92 , 54485464.

  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res., 13 , 707730.

  • Munk, W. H., , and C. Wunsch, 1998: Abyssal recipes, Part II: Energetics of tidal and wind mixing. Deep-Sea Res., 45 , 19772010.

  • Naveira Garabato, A. C., , K. L. Polzin, , B. A. King, , K. J. Heywood, , and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303 , 210213.

    • Search Google Scholar
    • Export Citation
  • O’Dwyer, J., , and R. G. Williams, 1997: The climatological distribution of potential vorticity over the abyssal ocean. J. Phys. Oceanogr., 27 , 24882506.

    • Search Google Scholar
    • Export Citation
  • Park, Y-G., , and K. Bryan, 2000: Comparison of thermally driven circulation from a depth-coordinate model and an isopycnal-layer model. Part I: Scaling-law sensitivity to vertical diffusivity. J. Phys. Oceanogr., 30 , 590605.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , J. M. Toole, , J. R. Ledwell, , and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 , 9396.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , S. Hautala, , and D. Rudnick, 1996: Northward abyssal transport through the Samoan Passage and adjacent regions. J. Geophys. Res., 101 , 1403914055.

    • Search Google Scholar
    • Export Citation
  • Roussenov, V., , R. G. Williams, , and J. E. O’Dwyer, 2002: Formation of low potential vorticity over the deep Pacific. J. Phys. Oceanogr., 32 , 18111823.

    • Search Google Scholar
    • Export Citation
  • Roussenov, V., , R. G. Williams, , M. J. Follows, , and R. M. Key, 2004: Role of bottom water transport and diapycnic mixing in determining the radiocarbon distribution in the Pacific. J. Geophys. Res., 109 .C06015, doi:10.1029/2003JC002188.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., , A. J. Weaver, , and A. Schmittner, 2003: Atlantic deep circulation controlled by freshening in the Southern Ocean. Geophys. Res. Lett., 30 .1754, doi:10.1029/2003GL017681.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. S., , and M. S. McCartney, 1993: On the North Atlantic circulation. Rev. Geophys., 31 , 2949.

  • Simmons, H. L., , S. R. Jayne, , L. C. St. Laurent, , and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6 .doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Speer, K. G., , and M. S. McCartney, 1992: Bottom water circulation in the western North Atlantic. J. Phys. Oceanogr., 22 , 8392.

  • Steele, M., , R. Morley, , and W. Ermold, 2001: A global ocean hydrography with a high quality Arctic Ocean. J. Climate, 14 , 20792087.

  • St. Laurent, L., , J. M. Toole, , and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31 , 34763495.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., , H. L. Simmons, , and S. R. Jayne, 2002: Estimates of tidally driven enhanced mixing in the deep ocean. Geophys. Res. Lett., 29 .2106, doi:10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Stommel, H. M., , and A. B. Arons, 1960: On the abyssal circulation of the World Ocean. I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6 , 140154.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., , J. L. Reid, , and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16 , 32133226.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , and B. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28 , 18321852.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., , K. Day, , V. Roussenov, , and R. Wood, 2002: Role of the overturning circulation in determining the potential vorticity over the abyssal ocean. J. Geophys. Res., 107 .3170, doi:10.1029/2001JC001094.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2000: Moon, tides and climate. Nature, 405 , 743744.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 115 115 7
PDF Downloads 109 109 6

On the Effect of Topographically Enhanced Mixing on the Global Ocean Circulation

View More View Less
  • 1 Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada, Victoria, British Columbia, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The strong influence of enhanced diapycnal mixing over rough topography on bottom-water circulation is illustrated using results from two global ocean model experiments. In the first, diapycnal diffusivity is set to the observed background level of 10−5 m2 s−1 in regions not subject to shear instability, convection, or surface-driven mixing. In the second experiment, mixing is enhanced above rough bottom topography to represent the dissipation of internal tides. Three important results are obtained. First, without the enhanced mixing in the abyssal ocean, the deep North Pacific Ocean becomes essentially a stagnant basin, with little bottom-water circulation and very weak deep stratification. Allowing for the enhanced diapycnal mixing above rough bottom topography leads to increased bottom-water circulation and deep stratification and a potential vorticity distribution in the North Pacific that is much more realistic. Second, the enhanced diapycnal mixing above rough topography results in a significant intensification and deepening of the Antarctic Circumpolar Current, as well as in stronger bottom-water formation around Antarctica. Last, our experiments suggest that dissipation of internal tides and the associated enhanced diapycnal mixing in the abyssal ocean play no part in the circulation of deep water forming in the North Atlantic Ocean and in the associated transport of heat in the ocean.

Corresponding author address: Dr. Oleg A. Saenko, Canadian Centre for Climate Modelling and Analysis, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada. Email: oleg.saenko@ec.gc.ca

Abstract

The strong influence of enhanced diapycnal mixing over rough topography on bottom-water circulation is illustrated using results from two global ocean model experiments. In the first, diapycnal diffusivity is set to the observed background level of 10−5 m2 s−1 in regions not subject to shear instability, convection, or surface-driven mixing. In the second experiment, mixing is enhanced above rough bottom topography to represent the dissipation of internal tides. Three important results are obtained. First, without the enhanced mixing in the abyssal ocean, the deep North Pacific Ocean becomes essentially a stagnant basin, with little bottom-water circulation and very weak deep stratification. Allowing for the enhanced diapycnal mixing above rough bottom topography leads to increased bottom-water circulation and deep stratification and a potential vorticity distribution in the North Pacific that is much more realistic. Second, the enhanced diapycnal mixing above rough topography results in a significant intensification and deepening of the Antarctic Circumpolar Current, as well as in stronger bottom-water formation around Antarctica. Last, our experiments suggest that dissipation of internal tides and the associated enhanced diapycnal mixing in the abyssal ocean play no part in the circulation of deep water forming in the North Atlantic Ocean and in the associated transport of heat in the ocean.

Corresponding author address: Dr. Oleg A. Saenko, Canadian Centre for Climate Modelling and Analysis, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada. Email: oleg.saenko@ec.gc.ca

Save