• Baquero-Bernal, A., , M. Latif, , and S. Legutke, 2002: On dipolelike variability of sea surface temperature in the tropical Indian Ocean. J. Climate, 15 , 13581368.

    • Search Google Scholar
    • Export Citation
  • Birol, F., , and R. Morrow, 2001: Sources of the baroclinic waves in the southeast Indian Ocean. J. Geophys. Res., 106 , 91459160.

  • Carton, J. A., , G. Chepurin, , X. Cao, , and B. Giese, 2000: A simple data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30 , 840858.

    • Search Google Scholar
    • Export Citation
  • Chambers, D., , B. D. Tapley, , and R. H. Stewart, 1999: Anomalous warming in the Indian Ocean coincident with El Niño. J. Geophys. Res., 104 , 30353047.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1981: Low-frequency temperature fluctuations off Bermuda. J. Geophys. Res., 86 , 65226528.

  • Frankignoul, C., 1995: Climate spectra and stochastic climate models. Application of Statistical Technique, Springer-Verlag, 29–51.

  • Frankignoul, C., , P. Müller, , and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind stress forcing. J. Phys. Oceanogr., 27 , 15331546.

    • Search Google Scholar
    • Export Citation
  • Gallagher, S., , H. von Storch, , R. Schnur, , and G. Hannoschöck, 1991: The Pop manual (POPS = Principal Oscillation Patterns). German Climate Computer Centre (DKRZ) Tech. Rep. 1, 66 pp.

  • Gibson, J. K., , P. Källberg, , S. Uppala, , A. Hernandez, , A. Nomura, , and E. Serrano, 1999: ERA-15 description, version 2. ECMWF Re-analysis Project Rep. Series 1, 73 pp.

  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28 , 473485.

  • Hasselmann, K., 1988: PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res., 93 , 1101511021.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. Academic Press, 511 pp.

  • Jin, F-F., 1997: A theory of interdecadal climate variability of the North Pacific ocean–atmosphere system. J. Climate, 10 , 18211835.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , and T. P. Barnett, 1994: Causes of decadal climate variability in the North Pacific/North American sector. Science, 266 , 9699.

    • Search Google Scholar
    • Export Citation
  • Latif, L., and Coauthors, 2001: ENSIP: The El Niño simulation intercomparison project. Climate Dyn., 18 , 255276.

  • Legutke, S., , and R. Voss, 1999: The Hamburg atmosphere–ocean coupled circulation model ECHO-G. German Climate Computer Centre (DKRZ) Tech. Rep. 18, 62 pp.

  • Masumoto, Y., , and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103 , 2758927602.

  • Perigaud, C., , and P. Delecluse, 1993: Interannual sea level variations in the tropical Indian Ocean from Geosat and shallow water simulations. J. Phys. Oceanogr., 23 , 19161934.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., 2001: Contribution of equatorial Pacific winds to southern tropical Indian Ocean Rossby waves. J. Geophys. Res., 106 , 24072422.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , W. Miao, , and P. Müller, 1997: Propagation and decay of forced and free baroclinic waves in off-equatorial oceans. J. Phys. Oceanogr., 27 , 24052417.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E., , X. Wang, , and C. F. Ropelewski, 1990: The biennial component of ENSO variability. J. Mar. Syst., 1 , 7196.

  • Roeckner, E., and Coauthors, 1996: , The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate. Max-Planck Institut für Meteorologie Tech. Rep. 218, 90 pp.

  • Saji, N. H., , B. Goswami, , P. Vinayachandran, , and T. Yamagata, 1999: A dipole mode in the Indian Ocean. Nature, 401 , 360363.

  • Schnur, R., , G. Schmitz, , N. Grieger, , and H. von Storch, 1993: Normal modes of the atmosphere as estimated by principal oscillation patterns and derived from quasigeostrophic theory. J. Atmos. Sci., 50 , 23862400.

    • Search Google Scholar
    • Export Citation
  • Sirven, J., , C. Frankignoul, , G. de Coëtlogon, , and V. Taillandier, 2002: Spectrum of wind-driven baroclinic fluctuations of the ocean in the midlatitudes. J. Phys. Oceanogr., 9 , 104127.

    • Search Google Scholar
    • Export Citation
  • Sturges, W., , and B. G. Hong, 1995: Wind forcing of the Atlantic thermocline along 32°N at low frequencies. J. Phys. Oceanogr., 25 , 17061715.

    • Search Google Scholar
    • Export Citation
  • Sura, P., , F. Lunkheit, , and K. Fraedrick, 2000: Decadal variability in a simplified wind-driven ocean model. J. Phys. Oceanogr., 30 , 19171930.

    • Search Google Scholar
    • Export Citation
  • Terray, L., , S. Valcke, , and A. Piacentini, 1998: The OASIS coupler user guide, version 2.2. CERFACS Tech. Rep. TR/CMGC/98-05, 77 pp.

  • von Storch, H., , T. Bruns, , I. Fischer–Bruns, , and K. Hasselmann, 1988: Principal oscillation pattern analysis of the 30–60 day oscillation in a GCM equatorial troposphere. J. Geophys. Res., 93 , 1102211036.

    • Search Google Scholar
    • Export Citation
  • Webster, P., , A. Moore, , J. Loschnigg, , and R. Leben, 1999: Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–1998. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • Wolff, J-O., , E. Maier-Reimer, , and S. Legutke, 1997: The Hamburg Ocean Primitive Equation Model. German Climate Computer Centre (DKRZ) Tech. Rep. 13, 98 pp.

  • Xie, S-P., , H. Annamalai, , F. A. Schott, , and J. P. J. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15 , 864878.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 85 85 12
PDF Downloads 68 68 12

Wind-Driven Oceanic Rossby Waves in the Tropical South Indian Ocean with and without an Active ENSO

View More View Less
  • 1 Max-Planck Institut für Meteorologie, Hamburg, Germany
  • | 2 Leibniz-Institut für Meereswissenschaften, Kiel, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The interannual heat content variability in the tropical south Indian Ocean (SIO) and its relationship with El Niño–Southern Oscillation (ENSO) is studied. The baroclinic ocean response to stochastic wind stress predicted by a simple analytical model is compared with two integrations of the ECHO-G coupled general circulation model. In one integration, ocean–atmosphere interactions are suppressed in the tropical Pacific Ocean, so that this integration does not simulate ENSO. In the other integration, interactions are allowed everywhere and ENSO is simulated. The results show that basinwide variability in the SIO heat content can be produced by two mechanisms: 1) oscillatory forcing by ENSO-related wind stress and 2) temporally stochastic and spatially coherent wind stress forcing. Previous studies have shown that transmission of energy from the tropical Pacific to the southern Indian Ocean occurs through coastal Kelvin waves along the western coast of Australia. The results in this paper confirm the occurrence of such transmission. In the ECHO-G simulations, this transmission occurs both at the annual time scale and at interannual time scales. Generation of offshore Rossby waves by these coastal Kelvin waves at interannual time scales—and, in particular, at the ENSO time scale—was found.

Corresponding author address: Dr. Astrid Baquero-Bernal, Max-Planck Institut für Meteorologie, Bundesstrasse 53, 20146 Hamburg, Germany. Email: baquero@dkrz.de

Abstract

The interannual heat content variability in the tropical south Indian Ocean (SIO) and its relationship with El Niño–Southern Oscillation (ENSO) is studied. The baroclinic ocean response to stochastic wind stress predicted by a simple analytical model is compared with two integrations of the ECHO-G coupled general circulation model. In one integration, ocean–atmosphere interactions are suppressed in the tropical Pacific Ocean, so that this integration does not simulate ENSO. In the other integration, interactions are allowed everywhere and ENSO is simulated. The results show that basinwide variability in the SIO heat content can be produced by two mechanisms: 1) oscillatory forcing by ENSO-related wind stress and 2) temporally stochastic and spatially coherent wind stress forcing. Previous studies have shown that transmission of energy from the tropical Pacific to the southern Indian Ocean occurs through coastal Kelvin waves along the western coast of Australia. The results in this paper confirm the occurrence of such transmission. In the ECHO-G simulations, this transmission occurs both at the annual time scale and at interannual time scales. Generation of offshore Rossby waves by these coastal Kelvin waves at interannual time scales—and, in particular, at the ENSO time scale—was found.

Corresponding author address: Dr. Astrid Baquero-Bernal, Max-Planck Institut für Meteorologie, Bundesstrasse 53, 20146 Hamburg, Germany. Email: baquero@dkrz.de

Save